6.207/14.15: Networks
 Problem Set 5
 Answer Keys

Problem 1

(a) Assume $h(x)>0$. A consumer with v_{i} is better off purchasing the good if $v_{i} h(x)-c \geq$ 0 . Thus, the best response is $\hat{x}=1-F(c / h(x))$. Note that the map $x \mapsto \hat{x}$ is continuous and maps a compact interval $[0,1]$ to itself. By Brouwer's fixed-point theorem, an equilibrium exists.
(b) Omitted.

Problem 2

(a) It describes a good that a consumer want some people to possess but not many. For example, a party venue that gets better with more attendance, but gets worse when it is too crowded. The value v_{i} measures how much player i likes to party. The value p is a cover charge for the club; if it is too high there is no equilibrium with postivie attendance.
(b) First, we need to check end points: $x=0$ is an equilibrium since $u_{i}<0$, while $x=1$ is not. Second, we check interior solutions. Note that $x \geq 1 / 2$ cannot be an equilibrium since then $g(x) \leq 0$. Let \bar{v} be such that consumers $[\bar{v}, 1]$ purchase and others do not. Since $v_{i} \sim U[0,1]$, we have $x^{*}=1-\bar{v}$ in interior equilibria. Thus, x^{*} solves $\left(1-x^{*}\right) g\left(x^{*}\right)-p=0$. The solutions that satisfy $x^{*}<1 / 2$ are $\frac{1-\sqrt{1-4 p}}{2}\left(<\frac{1}{4}\right)$ and $\frac{3-\sqrt{1+16 p}}{4}\left(>\frac{1}{4}\right)$.
(c) 0 and $\frac{3-\sqrt{1+16 p}}{4}$ are stable as small deviation will induce incentives to correct it; $\frac{1-\sqrt{1-4 p}}{2}$ is not since any small deviation will shift the equilibrium to either of the previous two.
(d) Suppose consumers with values higher than $1-x$ purchase the good. Then the social welfare is

$$
\int_{1-x}^{1}[v g(x)-p] d v=\frac{x(2-x)}{2} g(x)-p x .
$$

This is maximized at $x^{*}=1 / 4$. Therefore, no equilibrium attains the social optimum.

Problem 3

The circle graph with four players have the adjacency matrix of

$$
G=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

Recall that agent i 's best response function is

$$
\mathrm{BR}_{i}\left(x_{-i}\right)=\max \left\{0,1-\delta \sum_{j \neq i} g_{i j} x_{j}\right\}
$$

First, consider an equilibrium where everyone is active. The condition is

$$
\begin{aligned}
& x_{1}=1-\delta\left(x_{2}+x_{3}\right)>0, \\
& x_{2}=1-\delta\left(x_{1}+x_{4}\right)>0, \\
& x_{3}=1-\delta\left(x_{1}+x_{4}\right)>0, \\
& x_{4}=1-\delta\left(x_{2}+x_{3}\right)>0 .
\end{aligned}
$$

This yields $\left(x_{1}^{*}, x_{2}^{*}, x_{3}^{*}, x_{4}^{*}\right)=\left(\frac{1}{1+2 \delta}, \frac{1}{1+2 \delta}, \frac{1}{1+2 \delta}, \frac{1}{1+2 \delta}\right)$ for any $\delta \geq 0$. Second, consider an equilibrium with three active agents

$$
\begin{array}{ll}
x_{1}=1-\delta\left(x_{2}+x_{3}\right) & >0, \\
x_{2}=1-\delta x_{1} & >0, \\
x_{3}=1-\delta x_{1} & >0, \\
x_{4}=1-\delta\left(x_{2}+x_{3}\right) & =0,
\end{array}
$$

which is impossible. Third, consider an equilibrium with two active agents. By the same exercise, we know it is impossible to have agents 1 and 2 active. For the case with agents 1 and 4 active, we have

$$
\begin{aligned}
& x_{1}=1 \\
& x_{2}=1-\delta\left(x_{1}+x_{4}\right) \leq 0 \\
& x_{3}=1-\delta\left(x_{1}+x_{4}\right) \leq 0, \\
& x_{4}=1
\end{aligned}
$$

This yields $\left(x_{1}^{*}, x_{2}^{*}, x_{3}^{*}, x_{4}^{*}\right)=(1,0,0,1)$ as long as $\delta \geq 1 / 2$. Note also that its rotation $(0,1,1,0)$ is also an equilibrium.

Finally, we can verify that there is no equilibrium with one or zero active agent. Thus, there are two equilibria as derived above.

Problem 4

Consider the equilibrium strategy in which player 1 plays $\mathrm{C}, \mathrm{D}, \mathrm{C}, \mathrm{D}, \ldots$ as long as player 2 plays $\mathrm{D}, \mathrm{C}, \mathrm{D}, \mathrm{C}, \ldots$, and vice versa. If the opponent deviates, then each player
commits to play D forever. In period 1, player 1's anticipated payoff along the given equilibrium path is

$$
-1+6 \delta-1 \delta^{2}+6 \delta^{3}-\cdots=\sum_{k=0}^{\infty}(-1+6 \delta) \delta^{2 k}=\frac{-1+6 \delta}{1-\delta^{2}}
$$

By deviating to D , he obtains

$$
0+0 \delta+0 \delta^{2}+\cdots=0
$$

Thus, we need $\delta \geq 1 / 6$. It is easy to check that player 2 in period 1 (or player 1 in period 2) has no incentive to deviate if $\delta \geq 1 / 6$. Also, it is easy to see that if either has deviated (so they are in an off-path state), then there is no incentive for either to deviate from playing D forever. Hence, the given strategies constitute an equilibrium if $\delta \geq 1 / 6$.

Recall that the equilibrium payoff by cooperation in every period is $2+2 \delta+2 \delta^{2}+\cdots=$ $\frac{2}{1-\delta}$. Since $\frac{-1+6 \delta}{1-\delta^{2}}+\frac{6-\delta}{1-\delta^{2}}-\frac{2}{1-\delta}-\frac{2}{1-\delta}=\frac{1}{1-\delta}>0$, we see that this alternating equilibrium earns higher welfare.

Problem 5

(a) The pure strategy equilibria are (B, B) and (C, C).
(b) In the second period, the highest payoff attainable is 1 at (B, B) since it is the last period. In the first period, the highest possible payoff is 3 at (A, A). I argue that payoff 3 in the first stage is attainable. Consider the strategy in which a player takes A in the first period, and dependeing on the opponent's action in the first period, the player determines the second-stage action; in particular, he takes B in the second period if the opponent took A in the first period, and takes C otherwise. The pair of this strategy earns a payoff of 4 , while if one deviates, one can at most obtain $4-1=3$. Therefore, there is no incentive to deviate and hence it is a subgame perfect equilibrium. Thus, the highest welfare attainable in a SPE is $2(3+1)=8$.

MIT OpenCourseWare
https://ocw.mit.edu

14.15J/6.207J Networks

Spring 2018
For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

