6.207/14.15: Networks

Lectures 4, 5 \& 6: Linear Dynamics, Markov Chains, Centralities

Outline

Dynamical systems. Linear and Non-linear.
Convergence. Linear algebra and Lyapunov functions.

Markov chains.
Positive linear systems. Perron-Frobenius.
Random walk on graph.

Centralities.
Eigen centrality. Katz centrality. Page Rank. Hubs and Authorities.

Reading:
Newman, Chapter 6 (Sections 6.13-14).
Newman, Chapter 7 (Sections 7.1-7.5).

Dynamical systems

Discrete time system: time indexed by k
let $x(k) \in \mathbb{R}^{n}$ denote system state
e.g. amount of labor, steele and coal available in an economy

System dynamics: for any $k \geq 0$

$$
\begin{equation*}
x(k+1)=F(x(k)) \tag{1}
\end{equation*}
$$

for some $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

Primary questions:
Is there an equilibrium $x^{\star} \in \mathbb{R}^{n}$, i.e. $x^{\star}=F\left(x^{\star}\right)$.
If so, does $x(k) \rightarrow x^{\star}$ and how quickly.

Linear dynamical systems

Linear system dynamics: for any $k \geq 0$

$$
\begin{equation*}
x(k+1)=A x(k)+b \tag{2}
\end{equation*}
$$

for some $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$
example: Leontif's input-output model of economy

We'll study
Existence and characterization of equilibrium. Convergence.

Initially, we'll consider $b=\mathbf{0}$
Later, we shall consider generic $b \in \mathbb{R}^{n}$

Linear dynamical systems

Consider

$$
\begin{aligned}
x(k) & =A x(k-1) \\
& =A \times A x(k-2) \\
& \cdots \\
& =A^{k} x(0)
\end{aligned}
$$

So what is A^{k} ?
For $n=1$, let $A=a \in \mathbb{R}_{+}$:

$$
x(k)=a^{k} x(0) \xrightarrow{k \rightarrow \infty}\left\{\begin{array}{l}
0 \text { if } 0 \leq a<1 \\
x(0) \text { if } a=1 \\
\infty \text { if } 1<a .
\end{array}\right.
$$

Linear dynamical systems

For $n>1$, if A were diagonal, i.e.

$$
A=\left(\begin{array}{llll}
a_{1} & & & \\
& a_{2} & & \\
& & \ddots & \\
& & & a_{n}
\end{array}\right)
$$

Then

$$
A^{k}=\left(\begin{array}{llll}
a_{1}^{k} & & & \\
& a_{2}^{k} & & \\
& & \ddots & a_{n}^{k}
\end{array}\right)
$$

and, likely that we can analyze behavior $x(k)$ but, most matrices are not diagonal

Linear dynamical systems

Diagonalization: for a large class of matrices A, it can be represented as $A=S \Lambda S^{-1}$, where diagonal matrix

$$
\Lambda=\left(\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right)
$$

and $S \in \mathbb{R}^{n \times n}$ is invertible matrix

Then

$$
\begin{aligned}
x(k) & =\left(S \Lambda S^{-1}\right)^{k} x(0) \\
& =S \Lambda^{k} S^{-1} x(0)=S \Lambda^{k} c
\end{aligned}
$$

where $c=c(x(0))=S^{-1} x(0) \in \mathbb{R}^{n}$

Linear dynamical systems

Suppose

$$
S=\left(\begin{array}{ccc}
\mid & & \mid \\
s_{1} & \ldots & s_{n} \\
\mid & & \mid
\end{array}\right)
$$

Then

$$
\begin{aligned}
x(k) & =S \Lambda^{k} c \\
& =\sum_{i=1}^{n} c_{i} \lambda_{i}^{k} s_{i}
\end{aligned}
$$

Linear dynamical systems

$$
\begin{aligned}
& \text { Let } 0 \leq\left|\lambda_{n}\right| \leq\left|\lambda_{n} \quad 1\right| \leq \cdots \leq\left|\lambda_{2}\right|<\left|\lambda_{1}\right| \\
& \qquad x(k)=\sum_{i=1}^{n} c_{i} \lambda_{i}^{k} s_{i}=\lambda_{1}^{k}\left(c_{1} s_{1}+\sum_{i=2}^{n} c_{i}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} s_{i}\right)
\end{aligned}
$$

Then

$$
\|x(k)\| \xrightarrow{k \rightarrow \infty}\left\{\begin{array}{l}
0 \text { if }\left|\lambda_{1}\right|<1 \\
\left|c_{1}\right|\left\|s_{1}\right\| \text { if }\left|\lambda_{1}\right|=1 \\
\infty \text { if }\left|\lambda_{1}\right|>1
\end{array}\right.
$$

moreover, for $\left|\lambda_{1}\right|>1$,

$$
\left\|\lambda_{1}{ }^{k} x(k)-c_{1} s_{1}\right\| \rightarrow 0
$$

Diagonalization

When can a matrix $A \in \mathbb{R}^{n \times n}$ be diagonalize?
When A has n distinct eigenvalues, for example
In general, all matrices are block-diagonalizable a la Jordan form

Eigenvalues of A
Roots of n order (characteristic) polynomial: $\operatorname{det}(A-\lambda /)=0$ Let they be $\lambda_{1}, \ldots, \lambda_{n}$

Eigenvectors of A
Given λ_{i}, let $s_{i} \neq \mathbf{0}$ be such that $A s_{i}=\lambda_{i} s_{i}$
Then s_{i} is eigenvector corresponding to eigenvalue λ_{i}

If all eigenvalues are distinct, then eigenvectors are linearly independent

Diagonalization

If all eigenvalues are distinct, then eigenvectors are linearly independent

Proof. Suppose not and let s_{1}, s_{2} are linearly dependent. that is, $a_{1} s_{1}+a_{2} s_{2}=\mathbf{0}$ for some $a_{1}, a_{2} \neq 0$ that is, $a_{1} A s_{1}+a_{2} A s_{2}=\mathbf{0}$, and hence $a_{1} \lambda_{1} s_{1}+a_{2} \lambda_{2} s_{2}=\mathbf{0}$ multiplying first equation by λ_{2} and subtracting second

$$
a_{1}\left(\lambda_{2}-\lambda_{1}\right) s_{1}=\mathbf{0}
$$

that is, $a_{1}=0$; similarly, $a_{2}=0$. Contradiction. argument can be similarly extended for case of n vectors.

Diagonalization

If all eigenvalues are distinct $\left(\lambda_{i} \neq \lambda_{j}, i \neq j\right)$, then eigenvectors, s_{1}, \ldots, s_{n}, are linearly independent

Therefore, we have invertible matrix S, where

$$
S=\left(\begin{array}{ccc}
\mid & & \mid \\
s_{1} & \ldots & s_{n} \\
\mid & & \mid
\end{array}\right)
$$

Consider diagonal matrix of eigenvalues

$$
\Lambda=\left(\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right)
$$

Diagonalization

Consider

$$
\begin{aligned}
A S & =\left(\begin{array}{ccc}
\mid & & \mid \\
\lambda_{1} s_{1} & \ldots & \lambda_{n} s_{n} \\
\mid & & \mid
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\mid & & \mid \\
s_{1} & \ldots & s_{n} \\
\mid & & \mid
\end{array}\right)\left(\begin{array}{lll}
\lambda_{1} & & \\
& & \ddots
\end{array}\right. \\
& =S \Lambda
\end{aligned}
$$

Therefore, we have diagonalization $A=S \Lambda S^{-1}$

Remember: not every matrix is diagonalizable, e.g. $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$

Linear dynamical systems

Let us consider linear system with $b \neq \mathbf{0}$:

$$
\begin{aligned}
x(k+1) & =A x(k)+b \\
& =A(A x(k-1)+b)+b=A^{2} x(k-1)+(A+I) b \\
& \cdots \\
& =A^{k} x(0)+\left(\sum_{j=0}^{k-1} A^{k-j-1}\right) b .
\end{aligned}
$$

Let $A=S \Lambda S^{-1}, c=S^{-1} X(0)$ and $d=S^{-1} b$. Then

$$
x(k+1)=\sum_{i=1}^{n} c_{i} s_{i} \lambda_{i}^{k}+d_{i} s_{i}\left(\sum_{j=0}^{k-1} \lambda_{i}^{j}\right)
$$

Linear dynamical systems

Let $A=S \Lambda S^{-1}, c=S^{-1} x(0)$ and $d=S^{-1} b$. Then

$$
x(k+1)=\sum_{i=1}^{n} c_{i} s_{i} \lambda_{i}^{k}+d_{i} s_{i}\left(\sum_{j=0}^{k} \lambda_{i}^{j}\right)
$$

Let $0 \leq\left|\lambda_{n}\right| \leq\left|\lambda_{n} 1\right| \leq \cdots \leq\left|\lambda_{2}\right| \leq\left|\lambda_{1}\right|$. Then
If $\left|\lambda_{1}\right| \quad 1$, the sequence is divergent $(\rightarrow \infty)$
If $\left|\lambda_{1}\right|<1$, it converges as

$$
\begin{aligned}
x(k) & \xrightarrow{k \rightarrow \infty} \sum_{i=1}^{n} s_{i} \frac{d_{i}}{1-\lambda_{i}} \\
& =S\left(\begin{array}{lll}
\frac{1}{1-\lambda_{1}} & & \\
& \ddots & \\
& & \frac{1}{1-\lambda_{n}}
\end{array}\right) S^{-1} b=(I-A)^{-1} b
\end{aligned}
$$

Linear dynamical systems

For linear system, equilibrium x^{\star} should satisfy

$$
x^{\star}=A x^{\star}+b
$$

The solution to the above exists when A does not have an eigenvalue equal to 1 , which is

$$
x^{\star}=(I-A)^{-1} b
$$

But, as discussed, it may not be reached unless $\left|\lambda_{1}\right|<1$!

Nonlinear dynamical systems

Consider nonlinear system

$$
\begin{aligned}
x(k+1) & =F(x(k)) \\
& =x(k)+(F(x(k))-x(k)) \\
& =x(k)+G(x(k))
\end{aligned}
$$

where $G(x)=F(x)-x$

Continuous approximation of the above (replace k by time index t)

$$
\frac{d x(t)}{d t}=G(x(t))
$$

When does $x(t) \rightarrow x^{\star}$?

Lyapunov function

Let there exist a Lyapunov (or Energy) function $V: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$

Such that

1. V is minimum at x^{\star}
2. $\frac{d V(x(t))}{d t}<0$ if $x(t) \neq x^{\star}$
that is, $\nabla V(x(t))^{T} G(x(t))<0$ if $x(t) \neq x^{\star}$

Then $x(t) \rightarrow x^{\star}$

Lyapunov function: An Example

A simple model of Epidemic
Let $I(k) \in[0,1]$ be fraction of population that is infected and $S(k) \in[0,1]$ be the fraction of population that is susceptible to infection
Population is either infected or susceptible: $I(k)+S(k)=1$

Due to "social interaction" they evolve as

$$
\begin{aligned}
& I(k+1)=I(k)+\beta I(k) S(k) \\
& S(k+1)=S(k)-\beta I(k) S(k)
\end{aligned}
$$

where $\beta \in(0,1)$ is a parameter captures "infectiousness"

Question: what is the equilibrium of such a society?

Lyapunov function: An Example

Since $I(k)+S(k)=1$, we can focus only on one of them, say $S(k)$

Then

$$
S(k+1)=S(k)-\beta(1-S(k)) S(k)
$$

That is, continuous approximation suggests

$$
\frac{d S(t)}{d t}=-\beta(1-S(t)) S(t)
$$

An easy Lyapunov function is $V(S)=S$

Lyapunov function: An Example

For $V(S)=S$:

$$
\begin{aligned}
\frac{d V(S(t))}{d t} & =V^{\prime}(S(t)) \frac{d S(t)}{d t} \\
& =\beta(1-S(t)) S(t)
\end{aligned}
$$

Then, for $S(t) \in[0,1)$ if $S(t) \neq 0$,

$$
\frac{d V(S(t))}{d t}<0
$$

And V is minimized at 0

Therefore, if $S(0)<1$, then $S(t) \rightarrow 0$: entire population is infected!

Positive linear system

Positive linear system
Let $A=\left[A_{i j}\right] \in \mathbb{R}^{n \times n}$ be such that $A_{i j}>0$ for all $1 \leq i, j \leq n$ System dynamics:

$$
x(k)=A x(k-1), \text { for } k \geq 1
$$

Perron-Frobenius Theorem: let $A \in \mathbb{R}^{n \times n}$ be positive Let $\lambda_{1}, \ldots, \lambda_{n}$ be eigenvalues such that

$$
0 \leq\left|\lambda_{n}\right| \leq\left|\lambda_{n} \quad 1\right| \leq \cdots \leq\left|\lambda_{2}\right| \leq\left|\lambda_{1}\right|
$$

Then, maximum eigenvalue $\lambda_{1}>0$
It is unique, i.e. $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|$
Corresponding eigenvector, say s_{1} is component-wise >0

Perron Frobenius Theorem

- Why is $\lambda_{1}>0$?
- Let $\mathbb{T}=\left\{t>0: A x \geq t x\right.$, for some $\left.x \in \mathbb{R}_{+}^{n}\right\}$
$-\mathbb{T}$ is non-empty: $A_{\text {min }}=\min _{i j} A_{i j} \in \mathbb{T}$ because
- $A \mathbf{1} \geq A_{\text {min }} \mathbf{1}$ and $A_{\text {min }}>0$ since $A>0$
$-\mathbb{T}$ is bounded because
$-A x \not 又 n A_{\max } x$ for any $x \in \mathbb{R}_{+}^{n}$, where $A_{\max }=\max _{i j} A_{i j}$
- Let $t^{\star}=\max \{t: t \in \mathbb{T}\}$
- That is, there exists $x \in \mathbb{R}_{+}^{n}$ such that $A x \geq t^{\star} x$
- In fact, it must be $A x=t^{\star} x$.
- Because, if $A x \geq t^{\star} x$, then $A^{2} x>t^{\star} A x$ because $A>0$
- This will contradict t^{\star} being maximum over \mathbb{T}
- For any eigenvalue, eigenvector pair (λ, z), i.e. $A z=\lambda z$
$-|\lambda||z|=|A z| \leq A|z|$
- therefore, $|\lambda| \leq t^{\star}$
- Thus, we have established that eigenvalue with largest norm is $t^{\star}>0$.

Perron Frobenius Theorem

Why is eigenvector $s_{1}>0$?
By previous argument, $s_{1} \in \mathbb{R}_{+}^{n}$ and hence non-negative components Now $A s_{1}$ has all component >0 since $A>0$ and $s_{1} \neq 0$ And $A s_{1}=\lambda_{1} s_{1}$. That is, all components of s_{1} must be >0

Why is $\left|\lambda_{2}\right|<\lambda_{1}$?
Suppose $\left|\lambda_{2}\right|=\lambda_{1}$
Then, we will argue that it is possible only if $\lambda_{2}=\lambda_{1}$
If so, we will find contradiction

Perron Frobenius Theorem

If $\left|\lambda_{2}\right|=\lambda_{1}>0$, then $\lambda_{2}=\lambda_{1}$
Let $r=\lambda_{1}=\left|\lambda_{2}\right|>0$
Suppose $\lambda_{2} \neq r$. That is either it is real with value r or complex
Then there exists $m \quad 1$ such that λ_{2}^{m} has negative real part
Let $2 \epsilon>0$ be smallest diagonal entry of A^{m}
Consider matrix $T=A^{m}-\epsilon l$, which by construction is positive
$\lambda_{2}^{m}-\epsilon$ is its eigenvalue
Sin ${ }^{\text {ce }} \lambda^{2 n}$ has negative real part: $\left|\lambda_{2}^{m}-\epsilon\right|>r^{m}$
That is, maximum norm of eigenvalue of T is $>r^{m}$
A^{m} has eigenvalues $\lambda_{i}^{m}, 1 \leq i \leq n$
It's eigenvalue with largest norm is r^{m}
By construction, $T \leq A^{m}$ and both are positive. Therefore
$T^{k} \leq\left(A^{m}\right)^{k}$ and hence $\lim _{k \rightarrow \infty}\left\|T^{k}\right\|_{F}^{1 / k} \leq \lim _{k \rightarrow \infty}\left\|A^{m k}\right\|_{F}^{1 / k}$
Gelfand formula: for any matrix M, max norm of eigenvalues is equal
to $\lim _{k \rightarrow \infty}\left\|M^{k}\right\|^{1 / k}$
A contradiction: max norm ${ }_{25}$ of evs of A^{m} is $r^{m}<\left|\lambda_{2}^{m}-\epsilon\right|$ for T !

Perron Frobenius Theorem

$\lambda_{2}=\lambda_{1}=r>0$ is not possible
Suppose $s_{2} \neq s_{1}$ and $A s_{1}=r s_{1}$ and $A s_{2}=r s_{2}$
We had argued that $s_{1}>0$
$s_{2} \neq 0$ is real valued (since null space of $A-r l$ is real valued) At least one component of s_{2} is >0 (else choose $s_{2}=-s_{2}$)
Choose largest $\alpha>0$ so that $u=s_{1}-\alpha s_{2}$ is non-negative By construction u must have at least one component 0 (else choose larger α !)
And $A u=r u$
That is not possible since $A u>0$ and u has at least one zero component
That is, we can not choose s_{2} and hence λ_{2} can not be equal to λ_{1}

Positive linear system

More generally, we call A positive system if
$A \geq 0$ component-wise
For some integer $m \geq 1, A^{m}>0$
If eigenvalues of A are $\lambda_{i}, 1 \leq i \leq n$
Then eigenvalues of A^{m} are $\lambda_{i}^{m}, 1 \leq i \leq m$
The Perron-Frobenius for A^{m} implies similar conclusions for A

Special case of positive systems are Markov chains
we consider them next
as an important example, we'll consider random walks on graphs

An Example

Shuffling cards

A special case of Overhead shuffle: choose a card at random from deck and place it on top

How long does it take for card deck to become random?
Any one of 52! orderings of cards is equally likely

An Example

Markov chain for deck of 2 cards

Two possible card order: $(1,2)$ or $(2,1)$
Let X_{k} denote order of cards at time $k \geq 0$

$$
\begin{aligned}
\mathbb{P}\left(X_{k+1}=(1,2)\right)= & \mathbb{P}\left(X_{k}=(1,2) \text { and card } 1 \text { chosen }\right)+ \\
& \mathbb{P}\left(X_{k}=(2,1) \text { and card } 1 \text { chosen }\right) \\
& =\mathbb{P}\left(X_{k}=(1,2)\right) \times 0.5+\mathbb{P}\left(X_{k}=(2,1)\right) \times 0.5 \\
= & 0.5
\end{aligned}
$$

Notations

Markov chain defined over state space $N=\{1, \ldots, n\}$

$$
\begin{aligned}
& X_{k} \in N \text { denote random variable representing state at ti me } k \geq 0 \\
& P_{i j}=\mathbb{P}\left(X_{k+1}=j \mid X_{k}=i\right) \text { for all } i, j \in N \text { and all } k \geq 0 \\
& \qquad \mathbb{P}\left(X_{k+1}=i\right)=\sum_{j \in N} P_{j i} \mathbb{P}\left(X_{k}=j\right)
\end{aligned}
$$

Let $p(k)=\left[p_{i}(k)\right] \in[0,1]^{n}$, where $p_{i}(k)=\mathbb{P}\left(X_{k}=i\right)$

$$
p_{i}(k+1)=\sum_{j \in N} p_{j}(k) P_{j i}, \forall i \in N \quad \Leftrightarrow \quad p(k+1)^{T}=p(k)^{T} P
$$

$P=\left[P_{i j}\right]$: probability transition matrix of Markov chain non-negative: $P \geq 0$
row-stochastic: $\sum_{j \in N} P_{i j}=1$ for all $i \in N$

Stationary distribution

Markov chain dynamics: $p(k+1)=P^{\top} p(k)$
Let $P>0\left(P^{T}>0\right)$: positive linear system
Perron-Frobenius: P^{T} has unique largest eigenvalue: $\lambda_{\max }>0$
Let $p^{\star}>0$ be corresponding eigenvector: $P^{\top} p^{\star}=\lambda_{\max } p^{\star}$
We claim $\lambda_{\text {max }}=1$ and $p(k) \rightarrow p^{\star}$
Recall, $\|p(k)\| \rightarrow 0$ if $\lambda_{\text {max }}<1$ or $\|p(k)\| \rightarrow \infty$ if $\lambda_{\text {max }}>1$
But $\sum_{i} p_{i}(k)=1$ for all k, since $\sum_{i} p_{i}(0)=1$ and

$$
\begin{aligned}
\sum_{i} p_{i}(k+1) & =p(k+1)^{T} \mathbf{1}=p(k)^{T} P \mathbf{1} \\
& =\sum_{i j} p_{i}(k) P_{i j}=\sum_{i} p_{i}(k) \sum_{j} P_{i j} \\
& =\sum_{i} p_{i}(k)
\end{aligned}
$$

Therefore, $\lambda_{\text {max }}$ must be 1 and $p(k) \rightarrow p^{\star}$ (as argued before)

Stationary distribution

Stationary distribution: if $P>0$, then there exists $p^{\star}>0$ such that

$$
\begin{aligned}
& p^{\star}=P^{T} p^{\star} \Leftrightarrow p_{i}^{\star}=\sum_{j} P_{j i} p_{j}^{\star}, \forall i . \\
& p(k) \xrightarrow{k \rightarrow \infty} p^{\star}
\end{aligned}
$$

- More generally, above holds when $P^{k}>0$ for some $k \geq 1$
- Sufficient structural condition: P is irreducible and aperiodic
- Irreducibility
- for each $i \neq j$, there is a positive probability to reach j starting from i
- Aperiodicity
- There is no partition of N so that Markov chain state 'periodically' rotates through those partitions
- Special case: for each $i, P_{i i}>0$

Stationary distribution

Reversible Markov chain with transition matrix $P \geq 0$
There exists $q=\left[q_{i}\right]>0$ such

$$
\begin{equation*}
q_{i} P_{i j}=q_{j} P_{j i}, \quad \forall i \neq j \in N \tag{3}
\end{equation*}
$$

Then, stationary distribution, p^{\star} exists such that

$$
p^{\star}=\frac{1}{\left(\sum_{i} q_{i}\right)} q
$$

Because, by (3) and P being stochastic

$$
\begin{aligned}
\sum_{j} q_{j} P_{j i} & =\sum_{j} q_{i} P_{i j} \\
& =q_{i}\left(\sum_{j} P_{i j}\right) \\
& =q_{i}
\end{aligned}
$$

Random walk on Graph

Consider an undirected connected graph G over $N=\{1, \ldots, n\}$ It's adjacency matrix A
Let k_{i} be degree of node $i \in N$

Random walk on G
Each time, remain at current node or walk to a random neighbor Precisely, for any $i, j \in N$

$$
P_{i j}=\left\{\begin{array}{l}
\frac{1}{2} \text { if } i=j \\
\frac{1}{2 k_{i}} \text { if } A_{i j}>0, i \neq j \\
0 \text { if } A_{i j}=0, i \neq j
\end{array}\right.
$$

Does it have stationary distribution? If yes, what is it?

Random walk on Graph

Answer: Yes, because irreducible and aperiodic.
Further, $p_{i}^{\star}=k_{i} / 2 m$, where m is number of edges

Why? (alternative approach: reversible MC)

$$
\begin{aligned}
P=\frac{1}{2}(I & \left.+D^{1} A\right), p^{\star}=\frac{1}{2 m} D \mathbf{1}, \text { where } D=\operatorname{diag}\left(k_{i}\right), \mathbf{1}=[1] \\
p^{\star, T} P & =\frac{1}{2} p^{\star, T}\left(I+D^{-1} A\right)=\frac{1}{2} p^{\star, T}+\frac{1}{2} p^{\star, T} D^{-1} A \\
& =\frac{1}{2} p^{\star, T}+\frac{1}{2 m} \mathbf{1}^{T} A \\
& =\frac{1}{2} p^{\star, T}+\frac{1}{4 m}(A \mathbf{1})^{T}, \text { because } A=A^{T} \\
& =\frac{1}{2} p^{\star, T}+\frac{1}{4 m}\left[k_{i}\right]^{T}=\frac{1}{2} p^{\star, T}+\frac{1}{2} p^{\star, T}=p^{\star, T} .
\end{aligned}
$$

Eigenvector Centrality

Stationary distribution of random walk:

$$
\begin{aligned}
& p^{\star}=\frac{1}{2}\left(I+D^{-1} A\right) p^{\star} \\
& p_{i}^{\star} \propto k_{i} \rightarrow \text { Degree centrality! }
\end{aligned}
$$

Eigenvector centrality (Bonacich '87)
Given (weighted, non-negative) adjacency matrix A associated with graph G
$\mathbf{v}=\left[v_{i}\right]$ be eigenvector associated with largest eigenvalue $\kappa>0$

$$
A \mathbf{v}=\kappa \mathbf{v} \quad \Leftrightarrow \quad \mathbf{v}=\kappa^{-1} A \mathbf{v}
$$

Then v_{i} is eigenvector centrality of node $i \in N$

$$
v_{i}=\kappa^{1} \sum_{j} A_{i j} v_{j}
$$

Katz Centrality

More generally (Katz '53):
Consider solution of equation

$$
\mathbf{v}=\alpha A \mathbf{v}+\beta
$$

for some $\alpha>0$ and $\beta \in \mathbb{R}^{\mathbf{n}}$
Then v_{i} is called Katz centrality of node i

Recall

Solution exists if $\operatorname{det}(I-\alpha A) \neq 0$ equivalently A doesn't have α^{-1} as eigenvalue
But dynamically solution is achieved if largest eigenvalue of A is smaller than α^{-1}

Dynamic range of interest: $0<\underset{37}{\alpha}<\lambda_{\text {max }}^{-1}(A)$

PageRank

Goal: assign "importance" to each web-page in WWW
Utilize it to order pages for providing most relevant search results

An insight
If a page is important, and it points to other page, it must be important
But the influence of a page should not amplify with number of neighbors

Formalizing the insight: v_{i} be importance of page i

$$
v_{i}=\alpha \sum_{j} A_{i j} v_{j} / k_{j}+\beta
$$

for some $\alpha>0$ and $\beta \in \mathbb{R}$

PageRank

PageRank vector \mathbf{v} is solution of

$$
\mathbf{v}=\alpha A D^{-1} \mathbf{v}+\beta \mathbf{1}
$$

where $D=\operatorname{diag}\left(k_{i}\right)$ and $\mathbf{1}$ is vector of all 1

Solution

$$
\begin{aligned}
\mathbf{v} & =\beta\left(I-\alpha A D^{-1}\right)^{-1} \mathbf{1} \\
& =\beta\left(I+\alpha A D^{-1}+\alpha^{2}\left(A D^{-1}\right)^{2}+\ldots\right) \mathbf{1}
\end{aligned}
$$

That is, PageRank of page i is sum of weighted paths in it's neighborhood plus a constant

Hubs and Authority

Goal: assign importance to authors
By utilizing whose papers are cited by whom

An additional insight
A node is important if it points to other important node For example, a review article is useful if it points to important works

Two types of important nodes
Authorities: nodes that are important due to having useful information Hubs: nodes that tell where important authorities are

HITS: Hyperlink induced topic search

Formalizing
x_{i} and y_{i} be authority and hub centrality of node i
x_{i} is high if it is pointed to by hubs with high centrality

$$
x_{i}=\alpha \sum_{j} A_{i j} y_{j}, \quad \text { for some } \alpha>0
$$

y_{i} is high if it points to authorities with high centrality

$$
y_{i}=\beta \sum_{j} A_{j i} x_{j} \quad \text { for some } \beta>0
$$

HITS: Hyperlink induced topic search

Summarizing

$$
\begin{aligned}
& \mathbf{x}=\alpha A \mathbf{y} \\
& \mathbf{y}=\beta A^{T} \mathbf{x}
\end{aligned}
$$

Therefore (with $\lambda=(\alpha \beta)^{-1}$)

$$
\begin{aligned}
& \mathbf{x}=\alpha \beta A A^{T} \mathbf{x} \quad \Leftrightarrow \quad A A^{T} \mathbf{x}=\lambda \mathbf{x} \\
& \mathbf{y}=\alpha \beta A^{T} A \mathbf{y} \quad \Leftrightarrow \quad A^{T} A \mathbf{y}=\lambda \mathbf{y}
\end{aligned}
$$

HITS algorithm
Solve for \mathbf{x} in $A A^{T} \mathbf{x}=\lambda \mathbf{x}$ for largest eigenvector $\lambda>0$ Recover $\mathbf{y}=A^{T} \mathbf{x}$

HITS: Hyperlink induced topic search

HITS algorithm: for each $i \in N$

$$
\begin{aligned}
x_{i} & =\kappa \sum_{j}\left(A A^{T}\right)_{i j} x_{j} \\
y_{i} & =\kappa \sum_{j}\left(A^{T} A\right)_{i j} y_{j}
\end{aligned}
$$

$\left(A A^{T}\right)_{i j}=\sum_{k} A_{i k} A_{j k}$
Shared citations for i and j
Important authorities are cited by (many) others together
$\left(A^{T} A\right)_{i j}=\sum_{k} A_{k i} A_{k i}$
Shared references of i and j
Important hubs refer to (many) others together

MIT OpenCourseWare
https://ocw.mit.edu

14.15J/6.207J Networks

Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

