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Agenda 

Traffic  Routing  and  Equilibrium  

Congestion Games 

Reading: EK Chapter 8; Jackson Chapter 6 
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Physical Networks

Many interactions are constrained by physical networks

Roads and bridges
• Affect transit routing and congestion

Fiber-optic cables
• Ditto
• Cost-sharing

Geographic and political borders
• Affect trade, alliances, and conflicts
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Strategic Traffic  Routing

How to get to work in the morning
• What is the shortest route?
• Where are other people driving?

Optimal path depends on others’ behavior
• This is a game

Questions:
• What do traffic  patterns  look  like  in  equilibrium?
• How does equilibrium routing compare to optimal routing?
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A Simple Example

Two routes from A to B, one unit of traffic
• Route 1, longer but more bandwidth
• Route 2, short but suffers congestion 

Fixed latency l1(x) = 1 on long route, latency l2(x) = x on short
route
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A Simple Example: Optimal Routing

311 = 442= 
4 

2
11 

l22+11
22

One way to measure welfare: average latency 

Traffic xi on route i suffers delay li(xi)

Seek to minimize ÿ
xili(xi)

i 

Optimal routing splits traffic equally, giving

+
3 4 3

l1
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A Simple Example: Equilibrium Routing

Suppose the unit mass of traffic  comprises a  continuum  of
infinitesimal players
• Individual deviations don’t affect aggregate 

congestion
For any x2 < 1, we have l2(x2) < 1 =  l1(1 ≠ x2), so the marginal
player always chooses route 2 

Aggregate delay in equilibrium is

3
l1(0) · 0 +  l2(1) · 1 = 0 + 1 = 1  > 4

Inefficiency in equilibrium
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The Social Cost of Trafc

Why are traffic  patterns  inefficient in equilibrium?

Key economic concept: externalities

Driving on a road imposes costs both on the person driving and
on others
• Individual optimization fails to account for the effect of a 

decision on others’ welfare

Can potentially get better outcomes by closing roads (example
later) or by imposing tolls (see homework)
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Generalizing the Model

For now, assume one origin-destination pair
• Route one unit of traffic

Directed network N = (V, E)
• Origin vertex o, destination vertex d

Set of paths P from origin to destination
• A path p is a collection of edges i œ E
• Flow xp on path p œ P
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Generalizing the Model, continued

Each edge i œ E handles traffic 
ÿ

xi = xp

{pœP : iœp}

Latency function li(xi)
• Captures congestion
• Assume li nonnegative, differentiable, nondecreasing

Routing pattern is a nonnegative vector x, elements sum to 1
• Flow over each possible path

Total latency (cost) of x is

C(x) =
ÿ

xili(xi)
iœE
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Socially Optimal Routing

Benchmark: routing pattern that minimizes total cost

Routing pattern xS that solves
ÿ

min xili(xi)
iœE ÿ

s.t. xp = xi ’ i œ E
pœP : iœp
ÿ

xp = 1
pœP

xp Ø 0 ’ p œ P
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Equilibrium

In equilibrium, every motorist chooses best path given what
others are doing

If a motorist chooses path p, there cannot exist a path pÕ such
that ÿ

xi) < 
ÿ

li( li(xi)
iœpÕ iœp

Equilibrium conditions: there exists ⁄ such that
• For any path p, we have 

q
li(xi) Ø ⁄iœp 

• If xp > 0, then 
q

li(xi) = ⁄iœp 
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Equilibrium Characterization

Theorem
A feasible routing pattern xE is an equilibrium if and only if it
solves

min
ÿ

iœE 

⁄ xi

0
li(z)dz

s.t.
ÿ

{pœP : iœp}
xp = xi ’ i œ E

ÿ

pœP
xp = 1, and xp Ø 0 ’ p œ P

If each li is strictly increasing, then xE is unique.

Note by Weierstrass’s Theorem a solution exists, so an
equilibrium exists
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Proof

Rewrite the minimization problem as
ÿ ⁄ q

iœp 
xp

min li(z)dz
0iœE ÿ

s.t. xp = 1, andxp Ø 0 ’p œ P
pœP

Lagrangian
⁄ q

xp

Q R 
iœpÿ

li(z)dz ≠ ⁄ 
ÿ

xp ≠ 1b ≠
ÿ

µpxp
a

0iœE pœP pœP

Convex problem, FOC is necessary and sufficient
• FOC for xp is

E
ÿ

li(xi ) =  ⁄ + µi
iœp

• Complementary slackness: µi Ø 0 with equality if xp > 0
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Proof, continued

EIf xp = 0, FOC implies q li(x ) = ⁄ + µp Ø ⁄iœp i 

• Recall our first equilibrium condition

EIf xp > 0, FOC implies q li(x ) = ⁄iœp i 

• Recall our second equilibrium condition

Uniqueness when each li is strictly increasing...left as an exercise
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Extent of Inefciency

Recall our simple example showing that equilibirum fails to
minimize total cost
• Equilibrium can be inefficient

Equilibrium can be arbitrarily inefficient
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Extent of Inefciency, continued

Socially optimal routing solves

min x1 + x k2
+1

s.t. x1 + x2 = 1, x1, x2 Ø 0

First order conditions imply

k ≠ 1
k(k + 1)x2 = 1  =∆ x2 = (k + 1)

Total cost is then

≠ k+1
k kC(xS ) = 1 ≠ (k + 1)≠ 1 + (k + 1)

which approaches 0 as k æ Œ
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Extent of Inefciency, continued

In equilibrium, we again have x1 = 0 and x2 = 1
• Same argument as before

Total cost in equilibrium is

C(xE ) = 0 + 1 = 1

independent of k

C(xS )Ratio C(xE ) tends to zero with k

• Equilibrium can be arbitrarily inefficient relative to
optimum

Evan Sadler Environmental Networks 18/32



       

       

        

Braess’s Paradox

Additional routes can negatively impact network users

Parodox because more routes should only help traffic
• Could always leave routing unchanged
• Social optimum can only get better

Equilibrium response can change this
• Expalins why closing a road might improve traffic  in  congested

city
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Braess’s Paradox

In equilibrium, flow 1
2 on each route, average cost 3

2
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Braess’s Paradox

In equilibrium, all take highlighted route, average cost 2
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Braess’s Paradox

Studies suggest that closing streets in black will reduce
congestion.
• (See Youn et al., “Price of Anarchy in Transportation

Networks: Efficiency and Optimality Control”)
ª�"NFSJDBO�1IZTJDBM�4PDJFUZ��"MM�SJHIUT�SFTFSWFE��5IJT�DPOUFOU�JT�FYDMVEFE�GSPN�PVS�$SFBUJWF�$PNNPOT�MJDFOTF��
'PS�NPSF�JOGPSNBUJPO�TFF�IUUQT���PDX�NJU�FEV�IFMQ�GBR�GBJS�VTF�
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Congestion Games

Traffic  routing  game  belongs  to  larger  class  of  congestion games
• Internet traffic
• Airport traffic
• Supermarket checkout lines

Previously assumed players were “small”

In some cases, one player’s action can significantly impact
congestion
• e.g. Delta using Atlanta as a hub has a material impact on

airport congestion in Atlanta
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Congestion Games

Congestion model C = {N, R, (Si)iœN , (cj )jœR}
• Set of players N = {1, 2, ..., n}
• Set of resources R = {1, 2, ..., r}
• Resource combinations i can use Si µ R
• Benefit of resource j if k players use it cj (k) (possibly

negative)

Congestion game {N, (Si)iœN , (ui)iœN } with utilities

ui(si, s≠i) =
ÿ

cj (kj )
jœsi

Congestion games have a useful structure...

Evan Sadler Environmental Networks 24/32



�

�
�

Potential Games

A game is a potential game if there exists a potential 
function � : S æ R that characterizes players’ payoffs

Ordinal potential function if for all s≠i œ S≠i and all x, z œ Si:
• ui(x, s≠i) ≠ ui(z, s≠i) Ø 0 i �(x, s≠i) ≠ �(z, s≠i) Ø 0
• ui(x, s≠i) ≠ ui(z, s≠i) > 0 i �(x, s≠i) ≠ �(z, s≠i) > 0

Exact potential function if for all s≠i œ S≠i and all x, z œ Si:
• ui(x, s≠i) ≠ ui(z, s≠i) = �(x, s≠i) ≠ �(z, s≠i)

For each player, a best response maximizes the potential function
given others’ strategies
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Pure Strategy Equilibria in Potential Games

A game G is an ordinal (exact) potential game if it admits an
ordinal (exact) potential function

Theorem
If G is a potential game with S finite or compact, then G has at
least one pure strategy Nash equilibrim

Proof: The global maximum of the potential function
corresponds to a pure strategy Nash equilibrium

Note: result says nothing about uniqueness
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Example of Ordinal Potential Game

Example: Cournot competition
• Each of N firms chooses quantity qi, define Q = qN 

i=1 qi

• Payo for firm i is ui(qi, q≠i) = qi(P (Q) ≠ c)

Define the function
A 

N
B

�(q1, · · ·  , qN ) =  
Ÿ 

qi (P (Q) ≠ c)
i=1 

For all i and all q≠i, we have ui(qi, q≠i) ≠ ui(qi
Õ, q≠i) > 0 i 

�(qi, q≠i) ≠ �(qi
Õ, q≠i) > 0 for all qi, qi 

Õ > 0 

� is an ordinal potential function for this game
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Example of Exact Potential Game

Example: Cournot competition (again)
• Each of N firms chooses quantity qi, define Q = qN 

i=1 qi

• Assume linear demand, payo qi (a ≠ b(Q) ≠ c)

Define the function
A 

N
B

ÿ ÿ
�(q1, · · ·  , qN ) = aqi ≠ bqi 

2 ≠ b qiqj
i=1 1ÆiÆjÆN

Exercise: show that

ui(qi, q≠i) ≠ ui(qi
Õ , q≠i) = �(qi, q≠i) ≠ �(qi

Õ , q≠i)

for all qi, qi 
Õ > 0
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Congestion Games as Potential Games

Theorem

Õ

Every congestion game is a potential game and therefore has a 
pure strategy equilibrium

Proof: Fix the strategy profile s. For each resource j, let ki
j 

denote the number of users of j excluding player i

The utility difference for player i between si and si
 
 is then

i iÕ ui(si, s≠i) ≠ ui(si, s≠i) =
ÿ

cj (k + 1) ≠
ÿ

cj (k + 1)j j 
jœsi Õjœsi

Evan Sadler Environmental Networks 29/32



Congestion Games as Potential Games

Given a profile s, let Js denote the resources used by at least one
player, and let Js≠i denote the resources used by at least one
player excluding i

Consider the function
S 

kj
T 

�(s) =  
ÿ ÿ

cj (k)U V
jœJs k=1

Which we can rewrite as
i

S 
kj

T 

i�(si, s≠i) =  
ÿ Wÿ

cj (k)XV +
ÿ

cj (k + 1)jU 
jœJs≠i k=1 jœsi
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Congestion Games as Potential Games

Therefore:
i

S 
k 

T 

iÕ ÿ
j (k�(si, s≠i) ≠ �(si, s≠i) =

ÿ W
j

cj (k)XV +
ÿ

c + 1)jU 
jœJs≠i k=1 jœsi

i
S 

kj

T 

≠
ÿ Wÿ

cj (k)XV +
ÿ

cj (ki
j + 1)U 

ÕjœJs≠i k=1 jœsi

i i=
ÿ

cj (k + 1) ≠
ÿ

cj (k + 1)j j 
jœsi jœsÕ

i

= ui(si, s≠i) ≠ ui(si
Õ , s≠i)
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Takeaways

Physical networks constrain many interactions, and the structure
of these networks therefore guides individual decisions

Strategic interactions have some non-obvious implications
• Equilibrium behavior can be much worse than the social

optimum
• Closing roads can make everyone better off

Next time: more externalities and network effects
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