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Agenda

e Strategic network formation
e Pairwise stability
e One-sided link formation

e A game played on an endogenous network

Reading: Jackson, chapters 6 and 11
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Motivation

First half of course covered several models for generating random
networks, capture observed features

Why do networks form? What determines their structure?
e Coauthor networks
e Firm R&D networks

e Financial networks

Introduce ideas from cooperative game theory to study strategic
choices about link formation
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A Network Formation Game

Set of players N, set of possible graphs G (undirected)

Payoff for player :

Utility for every possible network

Will consider different specific payoff functions, different
protocols for forming links
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Pairwise Stability

Problem with Nash equilibrium in this setting, will apply a
cooperative solution concept: pairwise stability

Suppose players simultaneously announce with whom they want
to form links

e Huge multiplicity if link formation requires both parties to
announce

Want to account for strategic incentives, but allow for better
coordination

Pairwise stability: a network is stable if no one wants to delete a
link and no pair wants to form a link
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Pairwise Stability

Definition
A network (G is pairwise stable if:

For all 75 € G, we have u;(G) > u;(G —ij), and

For all o5 ¢ G, if u;(G + ij) > u;(G), then

If a link is present, neither player benefits from its removal

If a link is not present and one agent benefits from adding it, the
other is worse off from adding it

Unilateral deletion, need agreement for addition
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Efficiency

Are stable networks efficient?

Definition
A network G is efficient if

A network G is Pareto efficient if there is no G' € G such that
u; (G") > u;(G) for all 4, with strict inequality for at least one .

Efficiency implies Pareto efficiency

e |s the reverse true?
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Example: Distance-Based Utility

Suppose we have

wi(G) = Y b(li5(G)) — di(G)e
J71
e ¢ > 0 is the cost of making a connection
e d;(G) is the number of neighbors i has in GG
e [;;(G) is the distance between ¢ and j in G (take [;j(G) = o0
if 2 and j are not connected)

e b : N — R is a benefit function depending on distance,
assume strictly decreasing and b(co) = 0

An efficient network maximizes

S

U =3 | S H1(6) ~ di(G)e

i
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Pairwise Stability and Efficiency

Suppose that

b(1) < c < b(1)+ (n — 2)b(2)

Efficient network is a star network

e Peripheral players 7 earn

e Central player earns (n — 1)(b(1) — ¢)
Total utility

U= (n—1)[20(1) — 2c+ (n — 2)b(2)]
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Pairwise Stability and Efficiency

Given symmetry, sufficient to check that we cannot increase U by
adding or subtracting one link

Suppose we remove a link, new utlity
U' =(n—2)[2b(1) — 2¢c+ (n — 3)b(2)]
We have

U' —U = —-2b(1) + 2¢c — 2(n — 2)b(2)
= —2(BlF=¢+ (n'52)b(2)) <0

Since ¢ < b(1) + (n — 2)b(2)

Evan Sadler Network Formation 10/31




Pairwise Stability and Efficiency

If we add a link, we reduce the distance between just two of the
players

New utility

U = < > b(1) = ¢+ (n = 2)b(2)] + (n — 1) [b(1) —

Difference

since b(1) < c

Evan Sadler Network Formation 11/31




Pairwise Stability and Efficiency

However, the star network is not pairwise stable

Central player earns utility
uw(G)=(n—1)(b(1) —c) <0
In general, stable networks =£ efficient networks

Intuitively, links to the central player create positive externalities
for others, reduces distances for all

e Fails to internalize these benefits
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Pairwise Stability and Efficiency

heorem
In the distance-based utility mode, the unique efficient network is

The complete network if b(2) < b(1) — ¢
A star on all nodes if b(1) — b(2) < ¢ < b(1) + (n — 2)b(2)
The empty network if ¢ > b(1) + (n — 2)b(2)
In contrast, stable networks have the following properties
There is at most one non-empty component
If b(2) < b(1) — ¢, the complete network is uniquely stable
If b(1) — b(2) < ¢ < b(1), the star network is stable
If b(1) < ¢, every node has either no links or at least two links

Pairwise stable networks are inefficient exactly when

b(1) < c < b(1)+ (n — 2)b(2)
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Pairwise Stability and Efficiency

Positive externalities = too few links in equilibrum

e What about negative externalities?

Look at the “coauthor model” alert(Jackson and Wolinsky, 1996)

e If your coauthor has lots of other coauthors, less time to spend
on your project

Payoff for player 2
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Pairwise Stability and Efficiency

Theorem (Jackson and Wolinsky)

In the coauthor model, if n is even, the efficient network structure
consists of 5 distinct pairs. If a network is pairwise stable and

n > 4, the network is inefficient and can be partitioned into
cliques, each with a different number of members.

People have too many coauthors

e Would be efficient to work with one partner, but players form
larger groups
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Proof

To maximize efficiency, we maximize

& 1 1
ZE“@'(G): 2 2 ( 4(G) @(G)*@-(G)@(G))

i:di(G)>07:15€G

Sum over first two terms bounded by 2n

Sum over last term bounded by n, equality iff d;(G) = d,;(G) =1
for all 75

e Only happens if every play has one neighbor
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Proof

Now pairwise stable networks. Suppose ij ¢ G. Player i wants to
create link 77 iff

uw; (G +17) > u;(G)

which is true if

k4], ik€G

1 1 1
2 <di(G) 174G T @GO+ 1)dk(G)>
1
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Proof

Simplifying gives
Ii 1 1 1 1
WIS AP
dj"‘l( d Rk d; d;+1 (k;éj,zz%e(}dk)
Multiply by d;(G) + 1 to obtain
d;(G) + 2 1 1
>
L@ 1 40 ( 2 @(G))

(if d;(G) = 0, take RHS = 0)

First show if d;(G)) = d,;(G), then ¢ and j want to form a link
e If d;(G) =d;(G), LHS > 1 for both, RHS < 1 for both
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Proof

To complete the argument, show if ¢ and j share a neighbor h
with d;, > max{d;,d;}, then ¢ and j want to connect

e |mplies connected components are cliques
d;+2

Ifdz Zdh—l, then m Z 1

e |f inequality is strict, we are done

e If not, then d; > 2 and d;, > 2, implying

1 1
iC) ( - @(G)) o

k4, ikeqG

and we are done

If d; > d;, — 1, then ¢ wants to link to j; proof for d; < dj, — 1

left as an exercise
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Existence of Pairwise Stable Networks

Stable networks exist in our examples, is this always the case?

No. Suppose there are 4 players and:

e Forming a link costs 5 to each player

Utility from
Utility from

Utility from
others is 16

being isolated is 0

peing linked in an isolated pair is 12

being connected (diretly or indirectly) to two

Utility from being connected to all three others is 18

There is no stable network
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Potential Functions

How to guarantee existence?
e Think back to potential games

Definition
Networks G and GG’ are adjacent if either G' = G + 1J or
G = G' 4 iy for some 7j. We say that G’ adjacent to G defeats

G if either
G' =G — 15 and u;(G") > u;
G' = G +1ij and both u;(G") > u;(G) and u;(G") > u,(G),
with at least one strict inequality

A network is pairwise stable iff there is no adjacent network that
defeats it

21/31
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Potential Functions

A sequence of adjacent networks (G, G, ..., Gk ) is an
improving path if G, defeats G,

If no pairwise stable network exists, there must be an improving
cycle: an improving path with G; = Gk

Can rule this out if utilities come from a potential function:
® : G — R is an ordinal potential if G’ defeats GG if and only if

¢(G') > o(G)

Proposition

If the network formation game has an ordinal potential, there are
no improving cycles.
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Directed Networks and Nash Stability

In some applications, links are made unilaterally
e Paper citation
e Webpage linking

e Following on social media

A different game: let G be the set of directed networks on the set
of players N

e Players simultaneously propose sets of directed links

e |If 2 chooses to form link 77, it gets formed

Unilateral formation, look at equilibria
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Directed Networks and Nash Stability

Set of pure strategies for player i is S; = 2V\#}
e Link 727 forms if 7 € s;
e Network is G(s) ={ij : j € s; for some i}

Definition
A directed network G is (strictly) Nash stable if

u; (G)(>) > u;(G") for each i and all G’ that differ from G only
on links originating from 1.
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Directed Networks and Nash Stability

A simple example: write R;(G) for the number of players
reachable from 7 through directed paths

e Assume payoff to player i is

u;(G) = Ry(G) — cd;(G)

Theorem (Bala and Goyal, 2000)

The unique efficient network structure is an n-player wheel if
c <n —1 and an empty network if c > n — 1. Moreover,

If c < 1, then n-player wheels are the only strictly Nash stable
networks

If1 <c<n—1, then n-player wheels and empty networks are
strictly Nash stable

If c >n — 1, then the empty network is uniquely Nash stable
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Network Formation and Network Effects

As discussed in the lectures on network effects, network structure
can affect our incentives to adopt products or engage in certain
behaviors (e.g. crime)

Typically the network is endogenous

e Choice to form links influenced by anticipated outcome of
strategic Interactions

A simple framework to think about this:

e Unit mass of players

e Player 7 invests productive effort k; € R™ and social effort
s; € RT

e Write simply £ and s for the average productive and social
efforts of other players
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Network Formation and Network Effects

Player ¢ earns utility

1

1 2 / 2
ui(si, ]CZ', S, ]{) — kz Cae §Ckz + as; kzk o 582

e Private benefit £,
o Cost of productive effort ck;?
e Complementarities scale with social effort

e Cost of social effort %s?

Players make choices simultaneously, study Nash equilibria
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Network Formation and Network Effects

Decision problem is symmetric, have s; = s and k; = £ in
equilibrium

Best response implies

Ak
Ozl—cki+a;\/\/k_:, 0= ar/k;k — s;

Taking k; = k£ and s; = s gives

Ozl—ckJrozg, 0=ak —s

In equilibrium

7 2 200
- 2c— a2’ 2c — o2

Evan Sadler Network Formation

28/31



Equilibrium Welfare

Equilibrium payoffs:

Lo 1,
u:(l—l—as)k—§ck — 58
Tioce & N2 2¢ + 20
T 2t—a?2c—0a2 (2c—a?)?
B G
~ (2c — a?)?

Naturally decreasing in ¢, increasing in « (need o < v/2c for this
to make sense)

Ratio ; increasing in o
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Efficiency

What are the efficient effort levels?

Maximize ’ h
— k — —ck? S
U 20 + as 23

First order conditions

0=1+as— ck, 0=ak—s

Solving vyields

1 Qv
S:
c— o2’ c — o2

k:

Underinvestment in equilibrium due to positive externality
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Network Formation and Network Effects

Generalizations:
e Heterogeneous types of players

e Ability to discriminate in linking effort

An important application: academic peer effects
e Peer effects in the classroom

e Peer effects from parental investments

Carrell et al. (2013), U.S. Airforce study
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