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Collusion with Perfect Observability
• N identical firms with constant marginal cost c. Discount factor δ.
• Bertrand competition at t = 1,2,… with market demand Q(p).
• Firms observe all prices at end of each period: 

• History:   ℎ𝑡𝑡−1 = { 𝑝𝑝1𝜏𝜏, … ,𝑝𝑝𝑁𝑁𝜏𝜏 }𝜏𝜏≤𝑡𝑡−1
• Firm i’s strategy: 𝑝𝑝𝑖𝑖𝑡𝑡(ℎ𝑡𝑡−1) for t = 1,2,…

In 14.122 I noted that
• The model has an SPE that looks like perfect competition: 

𝑝𝑝𝑖𝑖𝑡𝑡 ℎ𝑡𝑡−1 = 𝑐𝑐 ∀𝑖𝑖, 𝑡𝑡,ℎ𝑡𝑡−1

• For 𝛿𝛿 ≥ 1 − 1
𝑁𝑁

the model also has a SPE that looks like perfect collusion:

𝑝𝑝𝑖𝑖𝑡𝑡 ℎ𝑡𝑡−1 = �𝑝𝑝
𝑚𝑚 if ℎ𝑡𝑡−1 = (𝑝𝑝𝑚𝑚, … ,𝑝𝑝𝑚𝑚)
𝑐𝑐 otherwise
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Collusion with Perfect Observability
• The model has an SPE that looks like perfect competition: 

𝑝𝑝𝑖𝑖𝑡𝑡 ℎ𝑡𝑡−1 = 𝑐𝑐 ∀𝑖𝑖, 𝑡𝑡, ℎ𝑡𝑡−1

• For 𝛿𝛿 ≥ 1 − 1
𝑁𝑁

the model also has a SPE that looks like perfect collusion:

𝑝𝑝𝑖𝑖𝑡𝑡 ℎ𝑡𝑡−1 = �𝑝𝑝
𝑚𝑚 if ℎ𝑡𝑡−1 = (𝑝𝑝𝑚𝑚, … ,𝑝𝑝𝑚𝑚)
𝑐𝑐 otherwise

Remarks:
1. The model identifies another factor that can lead to positive markups.
2. It is easier to sustain collusion when 𝛿𝛿 is larger.

• Could explain how detection lags, smooth/lumpy demands, growth, and technological 
change affect markets.

3. It is easier to sustain collusion when N is smaller.
4. Given the equilibrium multiplicity we must believe in some equilibrium 

selection or accept our inability to forecast.
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Factors Limiting Collusive Pricing
We think that tacit collusion is much less common than the 𝛿𝛿 ≥ 1 − 1

𝑁𝑁
repeated game model suggests. Factors that make collusion more difficult 
include:
1. Imperfect observation of actions
2. Variable demand
3. Cost shocks
4. Antitrust enforcement

There are also factors that could make collusion easier than the model 
suggests:
1. Multimarket contact
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Collusion with Imperfect Monitoring 
Green-Porter (1984)
• Two firms with marginal cost c compete as in Bertrand at 𝑡𝑡 = 1, 2, …
• Market demand is noisy: 

𝑄𝑄𝑡𝑡 𝑝𝑝 = �𝑄𝑄 𝑝𝑝 with probability 1 − 𝛼𝛼
0 with probability 𝛼𝛼

Demand goes to the lower-priced firm (or splits 50-50 if prices equal).
• Imperfect observability: firms see their own demand, but not rival’s price or quantity.
Note: a firm that received zero demand does not know if the low-demand state arose or 
if the rival set a lower price.

Proposition: This model does not have an SPE in which both firms set 𝑝𝑝𝑖𝑖𝑡𝑡 = 𝑝𝑝𝑚𝑚 in each 
period on the equilibrium path.

Proof sketch:  In such a SPE firm 1 would need to keep charging 𝑝𝑝𝑚𝑚 even if it got zero 
demand in the first 1,000,000 periods. Given this, firm 2 will want to cut its price to 
𝑝𝑝𝑚𝑚 − 𝜀𝜀.
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Collusion with Imperfect Monitoring 
Green-Porter (1984)
• Market demand is noisy: 

𝑄𝑄𝑡𝑡 𝑝𝑝 = �𝑄𝑄 𝑝𝑝 with probability 1 − 𝛼𝛼
0 with probability 𝛼𝛼

Proposition: For 𝛼𝛼 < 1
2

and 𝛿𝛿 sufficiently close to one the model does have a partially 
collusive equilibrium in which firms initially set 𝑝𝑝𝑖𝑖𝑡𝑡 = 𝑝𝑝𝑚𝑚, switch to 𝑝𝑝𝑖𝑖𝑡𝑡 = 𝑐𝑐 for T periods 
every time some firm gets zero demand, and then go back to 𝑝𝑝𝑖𝑖𝑡𝑡 = 𝑝𝑝𝑚𝑚 after the T 
periods are over (for some T).

Proof sketch:  Write 𝑉𝑉𝑚𝑚 for the PDV of payoffs at t=0 and 𝑉𝑉𝑝𝑝 for the PDV of payoffs at 
the start of the punishment phase. We need to show that there are no profitable single 
period deviations in any states of this process.

Showing that there is no profitable deviation during the punishment phase is easy: a 
firm that deviates can’t earn positive profits in the period in which in deviates and it 
does not affect pricing in any other period.

It remains just to show that firms don’t want to deviate at t with 𝑝𝑝𝑖𝑖𝑡𝑡 = 𝑝𝑝𝑚𝑚.
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Collusion with Imperfect Monitoring 
Green-Porter (1984)
Proof sketch (cont’d):  To show that firms don’t want to deviate in the cooperate phase 
we want to show that 𝑉𝑉𝑚𝑚 ≥ 𝜋𝜋𝑚𝑚 1 − 𝛼𝛼 + 𝛿𝛿𝑉𝑉𝑝𝑝.

The value functions are the solution to

𝑉𝑉𝑚𝑚 = 1 − 𝛼𝛼 𝜋𝜋𝑚𝑚

2
+ 𝛿𝛿𝑉𝑉𝑚𝑚 + 𝛼𝛼𝛿𝛿𝑉𝑉𝑝𝑝 𝑉𝑉𝑝𝑝 = 𝛿𝛿𝑇𝑇𝑉𝑉𝑚𝑚

Substituting the second expression into the first the solution is

𝑉𝑉𝑚𝑚 = (1−𝛼𝛼)𝜋𝜋𝑚𝑚

2
1

1−( 1−𝛼𝛼 𝛿𝛿+𝛼𝛼𝛿𝛿𝑇𝑇+1)
𝑉𝑉𝑝𝑝 = 𝛿𝛿𝑇𝑇𝑉𝑉𝑚𝑚

The required inequality is then (1 − 𝛿𝛿𝑇𝑇+1)𝑉𝑉𝑚𝑚 ≥ 𝜋𝜋𝑚𝑚 1 − 𝛼𝛼 . Cancelling the common 
𝜋𝜋𝑚𝑚 1 − 𝛼𝛼 terms and multiplying by the denominators gives

(1 − 𝛿𝛿𝑇𝑇+1) ≥ 2(1 − ( 1 − 𝛼𝛼 𝛿𝛿 + 𝛼𝛼𝛿𝛿𝑇𝑇+1))   ⟺ 2 1 − 𝛼𝛼 𝛿𝛿 + (2𝛼𝛼−1)𝛿𝛿𝑇𝑇+1≥ 1. 

For 𝛼𝛼 < 1
2

this will hold if 𝛿𝛿 is close to 1 and T is large. 
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Collusion with Imperfect Monitoring 
Green-Porter (1984)

Proposition: For 𝛼𝛼 < 1
2

and 𝛿𝛿 sufficiently close to one the model does have a partially collusive 
equilibrium in which firms initially set 𝑝𝑝𝑖𝑖𝑡𝑡 = 𝑝𝑝𝑚𝑚, switch to 𝑝𝑝𝑖𝑖𝑡𝑡 = 𝑐𝑐 for T periods every time some 
firm gets zero demand, and then go back to 𝑝𝑝𝑖𝑖𝑡𝑡 = 𝑝𝑝𝑚𝑚 after the T periods are over (for some T).

Remarks:

1. We see price wars in equilibrium. They can be part of a well functioning cartel.

2. Optimal collusion may have T finite.

3. Price wars are triggered by random demand shocks that resemble firms cheating. In this 
model, low demand triggers price wars.

4. In a model with continuous demand shocks players will use cutoffs in the observed variable 
and would sometimes get away with cheating.

5. Sustaining collusion is more difficult when demand is noisier. (Here, when 𝛼𝛼 is larger.)
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Collusion with Imperfect Monitoring 
More general analyses

Green and Porter (Econometrica 1984) study a Cournot-like model with continuous demand 
shocks.
• Firms choose quantities 𝑞𝑞1, 𝑞𝑞2, ⋯ , 𝑞𝑞𝑁𝑁
• 𝑝𝑝 𝑄𝑄 = (1 + ε)𝑃𝑃(𝑄𝑄) where ε∼F(.) has E(ε ) = 1
• G-P focus on symmetric “trigger price” equilibria – produce q* but revert to static Cournot

equilibrium for T periods if realized price is below �̂�𝑝.
Abreu, Pearce, and Stachetti (Econometrica 1990) provide more general result on optimal 
strongly symmetric equilibria in models of this type. They focus on the equilibrium payoff set 
and use dynamic programming arguments to characterize extreme points. In the GP model it 
can involve two-sided triggers to enter and exit price wars. 
Fudenberg, Levine, and Maskin (Econometrica 1994) show that in many models we can avoid 
the inefficiency in the GP and APS equilibria by using asymmetric strategies in which we punish 
firms that appear to have cheated by transferring market share from firms that appear to have 
cheated to other firms, avoiding the inefficiency of price wars.
Recent private monitoring papers include Awaya-Krishna (AER 2016) and Sugaya-Wolitzky (JPE
2018). The latter notes that cartels may sometimes prefer imperfect monitoring: it makes it 
harder to detect deviations, but can also make it harder to identify deviation opportunities. 9



Collusion with Cyclical Demand
Rotemberg-Saloner (1986)
• N firms with marginal cost c compete as in Bertrand at 𝑡𝑡 = 1, 2, …
• Market demand is noisy: 𝑄𝑄𝑡𝑡 𝑝𝑝 is 𝑄𝑄𝐿𝐿 𝑝𝑝 or 𝑄𝑄𝐻𝐻 𝑝𝑝 , each with prob. ½.
• Firms observe period t demand state before choosing 𝑝𝑝𝑖𝑖𝑡𝑡.
Consider possible collusive equilibria in which firms charge 𝑝𝑝𝐻𝐻 if demand is high and no 
one has cheated, 𝑝𝑝𝐿𝐿 if demand is low and no one has cheated, and c if anyone has ever 
deviated. 
Firms won’t deviate in the high state if 

𝑁𝑁−1
𝑁𝑁
𝜋𝜋𝐻𝐻 𝑝𝑝𝐻𝐻 ≤ 𝛿𝛿

1−𝛿𝛿
1
𝑁𝑁

(1
2
𝜋𝜋𝐻𝐻 𝑝𝑝𝐻𝐻 + 1

2
𝜋𝜋𝐿𝐿 𝑝𝑝𝐿𝐿 )

Firms won’t deviate in the low state if 
𝑁𝑁−1
𝑁𝑁
𝜋𝜋𝐿𝐿 𝑝𝑝𝐿𝐿 ≤ 𝛿𝛿

1−𝛿𝛿
1
𝑁𝑁

(1
2
𝜋𝜋𝐻𝐻 𝑝𝑝𝐻𝐻 + 1

2
𝜋𝜋𝐿𝐿 𝑝𝑝𝐿𝐿 )

Note:  The continuation payoff is state-independent. The short-run gain from deviating 
is affected both directly by the demand state and by the state-dependent price the firms 
are charging.
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Collusion with Cyclical Demand
Rotemberg-Saloner (1986)

The constraints required for SPE are:
𝑁𝑁−1
𝑁𝑁
𝜋𝜋𝐻𝐻 𝑝𝑝𝐻𝐻 ≤ 𝛿𝛿

1−𝛿𝛿
1
𝑁𝑁

(1
2
𝜋𝜋𝐻𝐻 𝑝𝑝𝐻𝐻 + 1

2
𝜋𝜋𝐿𝐿 𝑝𝑝𝐿𝐿 )

𝑁𝑁−1
𝑁𝑁
𝜋𝜋𝐿𝐿 𝑝𝑝𝐿𝐿 ≤ 𝛿𝛿

1−𝛿𝛿
1
𝑁𝑁

(1
2
𝜋𝜋𝐻𝐻 𝑝𝑝𝐻𝐻 + 1

2
𝜋𝜋𝐿𝐿 𝑝𝑝𝐿𝐿 )

• When 𝛿𝛿 ≈ 1 neither constraint is binding and firms can collude on 𝑝𝑝𝐿𝐿𝑚𝑚, 𝑝𝑝𝐻𝐻𝑚𝑚.
• When 𝛿𝛿 is smaller, the first binds. The best SPE has 𝑝𝑝𝐿𝐿 = 𝑝𝑝𝐿𝐿𝑚𝑚,𝑝𝑝𝐻𝐻 < 𝑝𝑝𝐻𝐻𝑚𝑚.

• When 𝛿𝛿 = 1 − 1
𝑁𝑁

both bind. 𝜋𝜋𝐻𝐻 𝑝𝑝𝐻𝐻 = 𝜋𝜋𝐿𝐿 𝑝𝑝𝐿𝐿 ⇒ 𝑝𝑝𝐿𝐿 > 𝑝𝑝𝐻𝐻.

• For smaller 𝛿𝛿 no collusion is possible and both firms set 𝑝𝑝𝑖𝑖𝑡𝑡 = 𝑐𝑐. 
Remarks:
1. For intermediate 𝛿𝛿 the model predicts that optimal markups are countercyclical.
2. If we added imperfect observation, the intuition that collusion is more difficult when demand is high 

should carry over. Whether this results in lower markups, price wars being more likely, or both will be 
model dependent.

3. Haltiwanger-Harrington and Bagwell-Staiger discuss other cyclical models.
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Private Cost Shocks 
Athey-Bagwell (RAND 2001)

Suppose that the members of a cartel have private cost shocks in each period. Efficiency 
requires that the low-cost firm produce in each period. With no limits on contracting, 
side payments to losing bidders could be used to induce firms to reveal costs.

Without side payments we can consider dynamic equilibria. 

Suppose N=2 and costs 𝑐𝑐𝑖𝑖𝑡𝑡 ∈ 𝑐𝑐𝐿𝐿 , 𝑐𝑐𝐻𝐻 are iid across firms and time.

1. When δ is close to one firms can achieve full collusion via strategies in which 
announcing low costs today gives the other firm priority to produce in the next 
period when both firms costs are low.

2. When δ is not as close to one, firms will price below the monopoly price and not 
produce efficiently. If a firm has lost too much future priority, it will be tempted to 
deviate from the collusive price. To make deviating less attractive, prices are 
reduced and production can be assigned to the high priority firm regardless of the 
cost realization. 12



Antitrust Authorities 
Harrington (RAND 2004)

Another constraint on tacit collusion is that firms must coordinate on one of 
many equilibria and discussing pricing can violate antitrust laws.
Antitrust rules, however, can also have unintended consequences.

Suppose that the probability that collusion will be detected is
𝜑𝜑 �⃗�𝑝1, �⃗�𝑝2 , … , �⃗�𝑝𝑡𝑡 = ∑𝑗𝑗𝑠𝑠 𝑔𝑔(𝑝𝑝𝑗𝑗𝑠𝑠 − 𝑝𝑝𝑗𝑗𝑠𝑠−1) with convex g minimized at 0.

Suppose that damages accrue according to
𝑥𝑥𝑗𝑗𝑡𝑡 = 𝛽𝛽𝑥𝑥𝑗𝑗𝑡𝑡−1 + 𝛾𝛾𝛾𝛾(𝑝𝑝𝑗𝑗𝑡𝑡)

1. Long run prices can be higher with antitrust penalties than without because 
penalties provide an additional reason not to deviate.

2. Collusion may feature prices that build up over time. 
3. More patient firms raise prices more slowly and reach higher price levels.
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Multimarket Contact
Bernheim-Whinston (RAND 1990)

When firms compete in many different markets does this make collusion easier?
• Two firms choose prices in N markets at 𝑡𝑡 = 0, 1, 2,⋯ .
• Prices are chosen simultaneously for all markets. All period t outcomes 

observed before choosing period t prices.
Firms can be punished in all markets in response to a deviation. But they can also 
gain by deviating simultaneously in all markets.
Observations:
1. When markets are identical (or with Bertrand competition in all markets) 

multimarket contact does not make collusion easier or harder.
2. When markets are asymmetric, firms can use spare punishment capacity in 

the easy-to-collude markets, to enable collusion in other markets.
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Markov Models of Price Competition
In some markets in which price is the main strategic variable, and is chosen 
repeatedly, there are important dynamic considerations, e.g. staggered/costly 
price changes, investments in quality improvement/cost reduction, etc.
Researchers often wish to ignore repeated game equilibria and focus on 
something more like static Nash equilibrium. The standard way in which this is 
done is to assume the firms play a Markov perfect equilibrium (MPE).
This is especially common in empirical IO.
In a MPE all player’s strategies are assumed to depend only on payoff-relevant 
variables, e.g. they can depend on current costs, but not on the price that some 
other firm charged seven periods ago.
The MPE concept is often treated as a means of obtaining an unique 
equilibrium, there is no guarantee of uniqueness.
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Maskin and Tirole provide interesting examples of MPE that can arise in an alternating 
move price competition game.

• Firm 1 chooses prices at t=1, 3, 5, … and firm 2 chooses prices at t=2, 4, 6, … All prices 
are observable.

• Suppose 𝐷𝐷 𝑝𝑝 = 1 − 𝑝𝑝 and prices are restricted to 0, 1
6

, 2
6

, 3
6

, 4
6

, 5
6

.

Observations:

1. There is no MPE in which the firms set p=c. Hence, all MPEs have positive profits.

2. If 𝛿𝛿 is close enough to one the model has a fully collusive equilibrium with price war 
punishments: s(5/6)=s(4/6)=s(3/6)=1/2, s(2/6)=1/6, s(1/6)=𝛼𝛼 � ⁄1 2 + (1 − 𝛼𝛼) � ⁄1 6. 
s(0)=1/2. 

3. There are also other partially collusive equilibria. For example, an “Edgeworth Cycle” is: 
s(5/6)=4/6, s(4/6)=3/6, s(3/6)=2/6, s(2/6)=1/6, s(1/6)=0, s(0)=𝛼𝛼 � ⁄5 6 + (1 − 𝛼𝛼) � 0. 
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Algorithmic Collusion
Calvano, Calzolari, Denicolo, Pastorello (AER 2020)

Many online businesses use automated pricing tools to update many prices: 
hotels, airlines, and car rentals selling though travel sites, Amazon sellers, 
Amazon vs. Target, etc. 
• With complete information there are many repeated-game equilibria, whether 

we model as simultaneous move or Markov with occasional price changes.
• Both demand and rivals’ repeated game strategies are naturally unknown. 

Firms will want to design pricing algorithms to learn to profit-maximize.
There is a large theory literature from the 1990s on whether naïve learning 
algorithms lead play to converge to some equilibrium and which equilibria are 
selected in games with multiple equilibria. See Fudenberg and Levine (MIT Press, 
1998). 
CCDP use simulations to investigate which repeated game equilibria (if any)  
emerge when firms adopt “Q-learning” pricing algorithms.
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Algorithmic Collusion
Calvano, Calzolari, Denicolo, Pastorello (AER 2020)

Q-learning is a standard approach for unknown dynamic environments:
• Profits 𝜋𝜋(𝑠𝑠,𝑎𝑎) depend on observable state s, action a, and random shocks.
• State transition process 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 also unknown.
Dynamic programming suggests we can learn to play optimally against exogenous 
uncertainty by learning the discounted value function Q defined by

𝑄𝑄 𝑠𝑠,𝑎𝑎 = 𝐸𝐸 𝜋𝜋 𝑠𝑠,𝑎𝑎 + 𝛿𝛿𝐸𝐸𝑠𝑠′|𝑠𝑠,𝑎𝑎 max
𝑎𝑎′

𝑄𝑄(𝑠𝑠′,𝑎𝑎′)

When 𝑆𝑆 and 𝐴𝐴 are finite this is learning the elements of an 𝑆𝑆 × 𝐴𝐴 matrix. 
A standard approach for this problem is:
• Conjecture some initial matrix 𝑄𝑄0.
• At each t choose 𝑎𝑎𝑡𝑡 = 𝑎𝑎𝑃𝑃𝑔𝑔max

𝑎𝑎
𝑄𝑄𝑡𝑡 𝑠𝑠𝑡𝑡 ,𝑎𝑎 with prob. 1 − 𝜀𝜀𝑡𝑡. Otherwise 𝑎𝑎𝑡𝑡 random. 

• Update 𝑄𝑄𝑡𝑡+1 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 = 1 − 𝛼𝛼 𝑄𝑄𝑡𝑡 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 + 𝛼𝛼 𝜋𝜋𝑡𝑡 + 𝛿𝛿max
𝑎𝑎′

𝑄𝑄𝑡𝑡 (𝑠𝑠𝑡𝑡+1,𝑎𝑎′) using 
observed 𝜋𝜋𝑡𝑡 and 𝑠𝑠𝑡𝑡+1. Rest of matrix unchanged.

With 𝜀𝜀𝑡𝑡 that decline appropriately, Q-learning converges to optimal play against 
exogenous uncertainty. 18



Algorithmic Collusion
Calvano, Calzolari, Denicolo, Pastorello (AER 2020)

CCDP consider a repeated price competition game.
• Consumers have discrete choice preferences with 𝑢𝑢𝑖𝑖𝑗𝑗 = 𝑣𝑣𝑗𝑗 − 𝑝𝑝𝑗𝑗 + 𝜇𝜇𝜀𝜀𝑖𝑖𝑗𝑗.
• Base model has 2 firms, identical costs, 15 possible prices, logit errors, 𝛿𝛿 =

0.95.
• Q learning models use last period’s prices as s, consider 10000 possible choices 

for algorithm parameters (𝛼𝛼,𝛽𝛽), and declare learning to have converged when 
optimal play is unchanged for 100,000 consecutive periods. 

Main results include:
1. Profits are usually 70-90% of the way from static Nash to monopoly.
2. Terminal strategies 𝜀𝜀 Nash, not SPE. Punishments usually finite price wars.
3. Prices are above static Nash even when 𝛿𝛿 ≈ 0. Increase in 𝛿𝛿 for 𝛿𝛿 > 0.5.
4. Profits still over 50% of way to monopoly for N=4. 19



Algorithmic Collusion
Calvano, Calzolari, Denicolo, Pastorello (AER 2020)

Paper is thoughtful about presenting results from many simulated models. 
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Algorithmic Collusion
Calvano, Calzolari, Denicolo, Pastorello (AER 2020)
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On Wednesday I’ll discuss some empirical papers on 
dynamic collusion including

• Porter
• Ellison
• Wang

See you then!
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• Consider a multi-stage game with observed actions – i.e., players simultaneously 
choose actions at each stage, and then all actions are observed prior to the next 
stage:

Two histories ℎ𝑡𝑡−1 and ℎ𝑡𝑡−1′ are Markov equivalent if for any two sequences {𝑥𝑥𝜏𝜏}𝜏𝜏≥𝑡𝑡 and 
{𝑥𝑥𝜏𝜏′ }𝜏𝜏≥𝑡𝑡 of present and future action profiles for the players, for all i we have

𝑢𝑢𝑖𝑖𝑡𝑡({𝑥𝑥𝜏𝜏}𝜏𝜏≥𝑡𝑡, ℎ𝑡𝑡−1) ≥ 𝑢𝑢𝑖𝑖𝑡𝑡({𝑥𝑥𝜏𝜏′ }𝜏𝜏≥𝑡𝑡, ℎ𝑡𝑡−1) ⇔ 𝑢𝑢𝑖𝑖𝑡𝑡({𝑥𝑥𝜏𝜏}𝜏𝜏≥𝑡𝑡,ℎ𝑡𝑡−1′ ) ≥ 𝑢𝑢𝑖𝑖𝑡𝑡({𝑥𝑥𝜏𝜏′ }𝜏𝜏≥𝑡𝑡,ℎ𝑡𝑡−1′ )

where 𝑢𝑢𝑖𝑖𝑡𝑡(�) is player i’s continuation payoff.

• A Markov strategy specifies the same action for any two Markov equivalent 
histories.

• A Markov perfect equilibrium is a subgame perfect NE in which all players use 
Markov strategies.
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Markov Equilibrium
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