14.271: Industrial Organization I

Introduction to Empirical Models of Demand Tobias Salz

*Lecture Notes are based on the most recent IO handbook chapters.

A brief introduction

Tobias Salz

- E52-460, OH by appointment
- PhD from NYU
- Research interests:
 - Decentralized market, in particular transportation markets.
 - Platforms and digital markets.
 - Consumer financial markets.

Definition: The use of economic theory to develop mathematical statements about how observable "endogenous" variables are related to observable "explanatory" variables, and unobservable variables.

Definition: The use of economic theory to develop mathematical statements about how observable "endogenous" variables are related to observable "explanatory" variables, and unobservable variables.

$\textbf{Counterfactual} \leftrightarrow \textbf{Causal effects}$

- Structural models estimate a feature of the environment that is invariant to some counterfactual.

Definition: The use of economic theory to develop mathematical statements about how observable "endogenous" variables are related to observable "explanatory" variables, and unobservable variables.

$\textbf{Counterfactual} \leftrightarrow \textbf{Causal effects}$

Structural models estimate a feature of the environment that is invariant to some counterfactual.

The typical IO approach

- Phrase a question in terms of a counterfactual
- Build the "primitives" of the model
- Attention to institutional details
- Simulate a counterfactual world and analyze outcomes of interest
- More recently, we also see more model testing again

It seems that different fields have different appetite for reliance on model assumptions.

Why does IO particularly emphasize the connection between theory and data? Why is there more reliance on model assumptions?

It seems that different fields have different appetite for reliance on model assumptions.

Why does IO particularly emphasize the connection between theory and data? Why is there more reliance on model assumptions?

- In IO the counterfactual of interest is often not observed in the data
- Typically, we want to know more than what happens in response to specific price change.
 - What is consumer welfare under the monopoly price, even if the monopoly price is not observed in the data?
 - What are the equilibium consequences of some policy change? Hard to do GE experiments.

Goal: to teach you the essentials of static demand models, as they are used in modern empirical IO.

Why model demand?

- 1. Consumer welfare analysis
- 2. Back out supply parameters, such as marginal cost (often proprietary, accounting cost not a good substitute)
- 3. Quantify market power / markups
- 4. Counterfactual analysis (pricing, mergers, conduct, regulatory interventions)
- 5. Predict demand for new goods

The next two lectures — roadmap

Goal: to teach you the essentials of static demand models, as they are used in modern empirical IO.

(Conflicting) modeling objectives in this literature:

- 1. Ability to handle many products
- 2. Can be estimated with aggregate data
- **3**. Realistic substitution patterns
- 4. Allow for unobserved product characteristics ("demand shocks")
- 5. Be able to deal with price endogeneity
- 6. Maintain computational tractability

Applications of empirical demand models

Table 1	Example	markets	and	topics
---------	---------	---------	-----	--------

Торіс	Example papers		
Transportation demand	McFadden et al. 1977		
Market power	Berry et al. 1995, Nevo 2001		
Mergers	Nevo 2000, Capps et al. 2003, Fan 2013		
Welfare from new goods	Petrin 2002, Eizenberg 2014		
Network effects	Rysman 2004, Nair et al. 2004		
Product promotions	Chintagunta & Honoré 1996, Allenby & Rossi 1999		
Environmental policy	Goldberg 1998		
Vertical contracting	Villas-Boas 2007, Ho 2009		
Equilibrium product quality	Fan 2013		
Media bias	Gentzkow & Shapiro 2010		
Asymmetric information and insurance	Cardon & Hendel 2001, Lustig 2010, Bundorf et al. 2012		
Trade policy	Goldberg 1995, Berry et al. 1999, Goldberg & Verboven 2001		
Residential sorting	Bayer et al. 2007		
Voting	Gordon & Hartmann 2013		
School choice	Hastings et al. 2010, Neilson 2013		

Working, QJE (1929): "In the case of pig iron, however, Professor H. L. Moore finds a "law of demand" which is not in accord with Marshall's universal rule..."

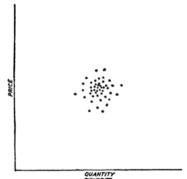
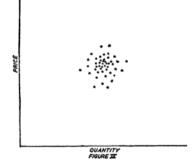


FIGURE I

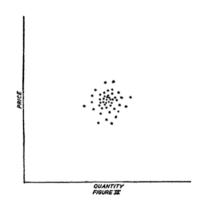
Working, QJE (1929): "In the case of pig iron, however, Professor H. L. Moore finds a "law of demand" which is not in accord with Marshall's universal rule..."

Demand and Supply:

$$q_t^D(p) = \beta^D + \alpha \cdot p_t + \epsilon_t$$
$$q_t^S(p) = \beta^S + \gamma \cdot p_t + \eta_t$$



Working, QJE (1929): "In the case of pig iron, however, Professor H. L. Moore finds a "law of demand" which is not in accord with Marshall's universal rule..."



Demand and Supply:

$$q_t^D(p) = \beta^D + \alpha \cdot p_t + \epsilon_t$$
$$q_t^S(p) = \beta^S + \gamma \cdot p_t + \eta_t$$

Equilibrium:

$$q_t^D(p^*) = q_t^S(p^*) \Leftrightarrow p_t^* = \frac{\beta^D - \beta^S + \epsilon_t - \eta_t}{\gamma - \alpha}$$

Econometric Problem:

$$\mathbb{E}[\epsilon \cdot p^*] = \mathbb{E}\left[\epsilon \cdot \left(\frac{\beta^D - \beta^S + \epsilon - \eta}{\gamma - \alpha}\right)\right] \neq 0$$

Demand systems — product space approach

Demand systems — product space approach

Build demand system up from products,

 Rotterdam model (Theil, 1965; Barten, 1966), Translog model (Christensen et al., 1975), AIDS (Deaton and Muellbauer, 1980).

Demand for each product is a function of the prices of all products in the market

$$q_{jt} = Q_j \left(\mathbf{p}_t, \mathbf{x}_t, \boldsymbol{\xi}_t
ight), \quad j = 1, \dots J$$

These models suffer typically suffer from a dimensionality problem, consider:

$$\mathbf{q}_{t} = A \cdot \mathbf{p}_{t} + \epsilon (\xi_{t})$$
, with $dim(A) = J \times J$

Issues:

- Number of parameters proportional to J²; even with restrictions (two stage budgeting, Slutsky symmetry) curse of dimensionality may ensue
- Demanding in terms of instruments
- Can't predict demand for new goods

Characteristics space discrete choice models

Characteristics space discrete choice models

Products are described by characteristics (Gorman, 1956; Lancaster, 1966; Rosen, 1974)

Random Utility Model: Choice micro-founded in (indirect) utility for products. Consumer *i* with unit demand for products $j \in \{1, ..., J\}$:

$$U_{ij} = U(p_j, x_j, \xi_j, D_i, \varepsilon_i)$$

where

 D_i, ε_i :observed and unobserved consumer characteristics (taste shifters) x_j, ξ_j :observed and unobserved product characteristics p_i :price

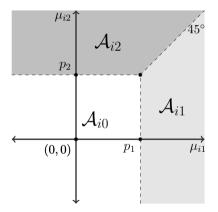
Consumers pick

$$\arg\max_{j\in\{1,\dots,J\}}U_{ij}$$

Discrete choice models — choice probabilities

Suppose $U_{ij} = \mu_{ij} - p_j$. Those choosing *j* must have:

$$\mu_{ij} \in A_j(p) = \{\mu_{ij} - p_j \geqslant \mu_{ik} - p_k, \forall k \neq j\}$$



Discrete choice models — the logit error

Parametrize: $U_{ij} = V(D_i, x_j, p_j, \xi_j) + \varepsilon_{ij}$ where ε_{ij} is iid, Type 1 Extreme Value with CDF:

$$F(\varepsilon_{ij}) = exp(-exp(-\varepsilon_{ij}))$$

Probability that *i* **chooses** *j*:

$$P_{ij} = \mathbb{P}(\varepsilon_{ij} - \varepsilon_{ik} \ge V_{ik} - V_{ij}, \forall k)$$

$$P_{ij} = \frac{\exp(V_{ij})}{\exp(V_{i0}) + \sum_{k \ge 1} \exp(V_{ik})}$$

Normalizations:

- Location $V_{i0} = 0$ adding a constant does not change choices
- <u>Scale</u> invariance to multiplication by a constant set variance of ε_{ij}
- Good 0 is often called the outside option (welfare is measured relative to that)

Discrete choice models — data scenario

Typical data scenario:

- Researcher observes aggregate market shares, prices, and product attributes.
- Distributions of consumer characteristics, such as income, location, family size, age.
- Instruments (more on this later)
- Can ignore sampling uncertainty in market shares (rules out zero market shares, small number of observations).
- Need to make a decision on the size of the market. Who are all the people that could have bought?

The canonical random coefficient demand model — Berry, Levinsohn, and Pakes (1995)

The canonical random coefficient demand model — Berry, Levinsohn, and Pakes (1995)

Indirect linear utility model of consumer *i* in market *t* for product *j*:

$$u_{ijt} = x_{jt}\beta_{it} + \alpha_{it}p_{jt} + \xi_{jt} + \varepsilon_{ijt}, \text{ for } j > 0$$

Where:

- $u_{i0t} = \varepsilon_{i0t}$
- ε_{ijt} are assumed to be iid type-1 extreme value distributed.
- $-x_{jt} \in \mathbb{R}^{K}$ is a (row) vector of observed product characteristics
- $-\xi_{jt} \in \mathbb{R}$ is a demand shock that consumers and firms observe, but we do not.

The canonical random coefficient demand model — Berry, Levinsohn, and Pakes (1995)

Indirect linear utility model of consumer *i* in market *t* for product *j*:

$$u_{ijt} = x_{jt}\beta_{it} + \alpha_{it}p_{jt} + \xi_{jt} + \varepsilon_{ijt}, \text{ for } j > 0$$

Where:

 $- u_{i0t} = \varepsilon_{i0t}$

- ε_{ijt} are assumed to be iid type-1 extreme value distributed.
- $-x_{jt} \in \mathbb{R}^{K}$ is a (row) vector of observed product characteristics
- $-\xi_{jt} \in \mathbb{R}$ is a demand shock that consumers and firms observe, but we do not.

Coefficients:

$$\beta_{it}^{(k)} = \beta_0^{(k)} + \sum_{I=1}^{L} \beta_d^{(I,k)} D_{ilt} + \beta_v^{(k)} v_{it}^{(k)}$$
$$\alpha_{it} = \alpha_0 + \sum_{I=1}^{L} \alpha_I D_{ilt} + \alpha_v v_{it}^{(0)}$$

The canonical random coefficient demand model

Indirect linear utility model of consumer *i* in market *t* for product *j*:

$$u_{ijt} = x_{jt}\beta_{it} + \alpha_{it}p_{jt} + \xi_{jt} + \varepsilon_{ijt}$$
, for $j > 0$

Define:

$$\delta_{jt} = x_{jt}\beta_0 + \alpha_0 p_{jt} + \xi_{jt}$$
 and $\mu_{ijt} = (x_{jt}, p_{jt}) \cdot (\Gamma \cdot D_{it} + \Sigma \cdot \nu_{it})$

Consumer choice probabilities:

$$\mathbb{P}[i \text{ chooses } j] = \frac{\exp\left(\delta_{jt} + \mu_{ijt}\right)}{1 + \sum_{k=1}^{J} \exp\left(\delta_{kt} + \mu_{ikt}\right)}$$

Market Shares:

$$s_{jt} = \sigma_j \left(\delta_t, \mathbf{x}_t, \mathbf{p}_t; \Gamma, \Sigma \right) = \int \frac{\exp\left(\delta_{jt} + \mu_{ijt} \right)}{1 + \sum_{k=1}^{J} \exp\left(\delta_{kt} + \mu_{ikt} \right)} dF \left(D_{it}, \nu_{it} \right)$$

Why do we need the "error term" ξ_{jt} ?

$$u_{ijt} = x_{jt}\beta_{it} + \alpha_{it}p_{jt} + \xi_{jt} + \varepsilon_{ijt}$$
, for $j > 0$

Since ε_{ijt} is *iid* \rightarrow without ξ_{jt} there is no *j*-specific unobserved variation.

- Products with the same x_{jt} and p_{jt} would need to have the same market share.
- All else equal, lower price products need to have larger market share.
- iPhone has \ge 50% market share in the U.S. despite being much more expensive than average Android phone

What is the argument for the random coefficient? (I)

Without random coefficients:

$$u_{ijt} = x_{jt}\beta_0 + \alpha_0 p_{jt} + \xi_{jt} + \varepsilon_{ijt}$$
, for $j > 0$

Get the **standard logit model**:

$$s_{jt} = \frac{\exp\left(\delta_{jt}\right)}{1 + \sum_{k=1}^{J} \exp\left(\delta_{kt}\right)}$$

Taking $log(\cdot)$ of market shares and subtract log-share of outside option (see Berry (1994))

$$log(s_{jt}) - log(s_{0t}) = \delta_{jt} = x_{jt}\beta_0 + \alpha_0 p_{jt} + \xi_{jt}$$

ightarrow can estimate this with OLS/2SLS!

What is the argument for the random coefficient? (II)

Price sensitivity:

$$\frac{\partial s_{jt}}{\partial p_{kt}} = \alpha_0 s_{kt} s_{jt}$$

Diversion ratios in the logit model:

$$\frac{\partial s_{jt}}{\partial p_{kt}} / \frac{\partial s_{kt}}{\partial p_{kt}} = \frac{s_{jt}}{(1 - s_{kt})}$$

Price elasticities in the logit model:

$$\eta_{jkt} = \frac{\partial s_{jt}}{\partial p_{kt}} \cdot \frac{p_{kt}}{s_{jt}} = \begin{cases} \alpha_0 \cdot p_{jt} \cdot (1 - s_{jt}) & \text{if } j = k \\ -\alpha_0 \cdot p_{kt} \cdot s_{kt} & \text{otherwise} \end{cases}$$

What is the argument for the random coefficient? (III)

Back to the random coefficient specification:

$$u_{ijt} = x_{jt}\beta_{it} + \alpha_{it}p_{jt} + \xi_{jt} + \varepsilon_{ijt}, \text{ for } j > 0$$

Price elasticities:

$$\eta_{jkt} = \frac{\partial s_{jt}}{\partial p_{kt}} \frac{p_{kt}}{s_{jt}} = \begin{cases} -\frac{p_{it}}{s_{jt}} \cdot \int \alpha_{it} \cdot s_{ijt} \cdot (1 - s_{ijt}) \, dF(D_{it}, v_{it}) & \text{if } j = k \\ \frac{p_{kt}}{s_{jt}} \cdot \int \alpha_{it} \cdot s_{ijt} \cdot s_{ikt} \, dF(D_{it}, v_{it}) & \text{otherwise} \end{cases}$$

More realistic substitution patterns:

- Different consumers value quality and price differently
- Different consumers substitute "locally" in different segments of the market

ightarrow In IO we often discard analytic tractability and elegance in favor of (realism + solid identification)

Consumer welfare

Note that expected welfare is a complicated object

- Integral over all possible ε draws and consumer choosing optimally conditional on draw

Logit model gives a closed form solution for expected welfare

$$\omega_{iAt} = \ln \left(\sum_{j \in A} \exp \{ \delta_{jt} + \mu_{ijt} \} \right)$$

ightarrow measured in utils, can be converted to \$-value by dividing through the price coefficient.

Some awkwardness arises because of the dual role of ε as an econometric and structural error term:

- ε -draws interpreted as real utility and not an optimization friction
- Problematic in markets with many products or where observed attributes poorly describe choices.
- Berry and Pakes (2007) argue that the random coefficient ameliorates this problem

Firms will price ξ_{jt} , which leads prices to be endogenous. What makes **good instruments** and **how many** do we need?

For simple multinomial logit models with:

$$log(s_{jt}) - log(s_{0t}) = x_{jt}\beta_0 + \alpha_0 p_{jt} + \xi_{jt}$$

we need only one excluded instrument.

The same is not true for mixed logit models a la BLP. Intuition:

- With non-linear parameters prices depend on the whole vector $\boldsymbol{\xi}_t$.
- Need variation that shifts how consumers substitute across different types of products to identify non-linear parameters.

Choice set variation across markets:

- Can provide very powerful variation
- <u>Concern:</u>

Choice set variation across markets:

- Can provide very powerful variation
- <u>Concern</u>: Which market a firm enters depends on unobserved demand shocks. More likely to hold in the short run.

Choice set variation across markets:

- Can provide very powerful variation
- <u>Concern</u>: Which market a firm enters depends on unobserved demand shocks. More likely to hold in the short run.

Cost instruments:

- Examples: material cost, distribution cost, tariffs, etc.
- Relevance and exclusion restriction is often very convincing.

Choice set variation across markets:

- Can provide very powerful variation
- <u>Concern</u>: Which market a firm enters depends on unobserved demand shocks. More likely to hold in the short run.

Cost instruments:

- Examples: material cost, distribution cost, tariffs, etc.
- Relevance and exclusion restriction is often very convincing.
- Problem: Often not available

Choice set variation across markets:

- Can provide very powerful variation
- <u>Concern</u>: Which market a firm enters depends on unobserved demand shocks. More likely to hold in the short run.

Cost instruments:

- Examples: material cost, distribution cost, tariffs, etc.
- Relevance and exclusion restriction is often very convincing.
- <u>Problem:</u> Often not available

Hausman instruments (Hausman and Zona, (1994)):

- Costs are not always directly observed and sometimes hard to collect.
- Prices from the same firm in other markets as proxies for cost, always part of the data
- Concern:

Choice set variation across markets:

- Can provide very powerful variation
- <u>Concern</u>: Which market a firm enters depends on unobserved demand shocks. More likely to hold in the short run.

Cost instruments:

- Examples: material cost, distribution cost, tariffs, etc.
- Relevance and exclusion restriction is often very convincing.
- <u>Problem:</u> Often not available

Hausman instruments (Hausman and Zona, (1994)):

- Costs are not always directly observed and sometimes hard to collect.
- Prices from the same firm in other markets as proxies for cost, always part of the data
- <u>Concern</u>: firm prices reflect both demand and supply factors. Need costs to be correlated and demand shocks to be uncorrelated across markets.

BLP instruments:

- Attributes of other products, $\sum_{j' \neq j} \mathbf{x}_{j't}$, always part of the data
- <u>Idea:</u> product attributes are exogenous and firm *j*'s price is responding to the strength of other firms' attributes.

BLP instruments:

- Attributes of other products, $\sum_{j' \neq j} \mathbf{x}_{j't}$, always part of the data
- <u>Idea</u>: product attributes are exogenous and firm *j*'s price is responding to the strength of other firms' attributes.
- <u>Concern:</u>

BLP instruments:

- Attributes of other products, $\sum_{j' \neq j} \mathbf{x}_{j't}$, always part of the data
- Idea: product attributes are exogenous and firm j's price is responding to the strength of other firms' attributes.
- <u>Concern</u>: product attributes may be endogenous and (like prices) set after firms observe ξ_{it} .
- There are many ways to construct these instruments
- Gandhi and Houde (2020) argue that it is better do define distances between own and other product attributes

Waldfogel instruments:

- Average demographic measures of nearby markets
- <u>Idea:</u> If firms price in zones that span markets (DellaVigna and Gentzkow (2019)), demographics in one market may affect demographics in another
- <u>Concern:</u>

BLP instruments:

- Attributes of other products, $\sum_{j' \neq j} \mathbf{x}_{j't}$, always part of the data
- Idea: product attributes are exogenous and firm j's price is responding to the strength of other firms' attributes.
- <u>Concern</u>: product attributes may be endogenous and (like prices) set after firms observe ξ_{it} .
- There are many ways to construct these instruments
- Gandhi and Houde (2020) argue that it is better do define distances between own and other product attributes

Waldfogel instruments:

- Average demographic measures of nearby markets
- <u>Idea:</u> If firms price in zones that span markets (DellaVigna and Gentzkow (2019)), demographics in one market may affect demographics in another
- <u>Concern</u>: Those demographics may be correlated with the demand shock.

Estimation

Objective function

$$\begin{split} \min_{\theta} g(\xi(\theta))' \cdot \Omega \cdot g(\xi(\theta)) \\ where \\ g(\xi(\theta)) &= \frac{1}{N} \sum_{\forall j, t} z'_{jt} \cdot \xi_{jt}(\theta) \\ \xi_{jt}(\theta) &= \delta_{jt} (\theta_2) - x_{jt} \beta_0 + \alpha_0 p_{jt} \\ \tilde{s}_{jt} &= \sigma_{jt} (\delta_t, x_t, \theta_2) \\ \sigma_{jt} (\delta_t, x_t, \theta_2) &= \int \frac{\exp\left[\delta_{jt} (\theta_2) + \mu_{ijt}(D_i, x_j; \theta_2)\right]}{1 + \sum_k \exp\left[\delta_{jt} (\theta_2) + \mu_{ikt}(D_i, x_j; \theta_2)\right]} dF(D_{it}, v_{it}|\theta_2) \end{split}$$

Estimation

Objective function

$$\begin{split} & \underset{\theta}{\min} \ g(\xi(\theta))' \cdot \Omega \cdot g(\xi(\theta)) \\ & \text{where} \\ & g(\xi(\theta)) = \frac{1}{N} \sum_{\forall j, t} z'_{jt} \cdot \xi_{jt}(\theta) \\ & \xi_{jt}(\theta) = \delta_{jt} \left(\theta_2\right) - x_{jt} \beta_0 + \alpha_0 p_{jt} \\ & \tilde{s}_{jt} = \sigma_{jt} \left(\delta_t, x_t, \theta_2\right) \\ & \sigma_{jt} = \int \frac{\exp\left[\delta_{jt} \left(\theta_2\right) + \mu_{ijt}\right]}{1 + \sum_k \exp\left[\delta_{jt} \left(\theta_2\right) + \mu_{ikt}\right]} dF\left(i|\theta_2\right) \end{split}$$

Estimation

Objective function

$$\min_{\theta} g(\xi(\theta))' \cdot \Omega \cdot g(\xi(\theta))$$

where

$$g(\xi(\theta)) = \frac{1}{N} \sum_{\forall j,t} z'_{jt} \cdot \xi_{jt}(\theta)$$

$$\xi_{jt}(\theta) = \delta_{jt} (\theta_2) - x_{jt} \beta_0 + \alpha_0 p_{jt}$$

$$\tilde{s}_{jt} = \sigma_{jt} (\delta_t, x_t, \theta_2)$$

$$\sigma_{jt} = \int \frac{\exp \left[\delta_{jt} (\theta_2) + \mu_{ijt}\right]}{1 + \sum_k \exp \left[\delta_{jt} (\theta_2) + \mu_{ikt}\right]} dF(i|\theta_2)$$

Pseudocode

Outer loop

1. minimize objective function over non-linear parameters $\boldsymbol{\theta}_2$

Inner loop

- 1. Fix a guess of θ_2
- 2. For every market t solve for $\delta_t(\theta_2)$ so that $\tilde{s}_{jt} = \sigma_{jt}$

$$\boldsymbol{\delta}_{t}^{(k)} = \boldsymbol{\delta}_{t}^{(k-1)} + \left[\log\left(\mathbf{s}_{j}\right) - \log\left(\boldsymbol{\sigma}_{j}\left(\boldsymbol{\delta}_{t}^{(k-1)}\right)\right)\right]$$

- **3**. Recover $\boldsymbol{\xi}_t$, α_0 , β_0 through regression.
- 4. Build sample moments

Challenges and open questions with the current demand approach

Many challenges for digital markets:

- Social networks hard to summarize as a collection of characteristics (Aridor (2022))
- Consumers often don't face prices
- Magnolfi et al. (2022): ask people about how close they think different products are to each other.
- Role for surveys and experiments.

Standard demand approach assumes posted and known prices

- In many important markets prices are negotiated and consumer-specific
- Consumers often lack knowledge of prices

Data:

- All car makes from 1971-1990, market defined as the whole US
- List prices
- 2217 year-model observations

Characteristics from Automotive News Market Data Book:

- # of cylinders
- # of doors
- horsepower
- length, width, weight, wheelbase
- EPA rating for miles per gallon
- dummies for air conditioning, automatic

TABLE 1

DESCRIPTIVE STATISTICS

Year	No. of Models	Quantity	Price	Domestic	Japan	European	HP/Wt	Size	Air	MPG	MP\$
1971	92	86.892	7.868	0.866	0.057	0.077	0.490	1.496	0.000	1.662	1.850
1972	89	91.763	7.979	0.892	0.042	0.066	0.391	1.510	0.014	1.619	1.875
1973	86	92.785	7.535	0.932	0.040	0.028	0.364	1.529	0.022	1.589	1.819
1974	72	105.119	7.506	0.887	0.050	0.064	0.347	1.510	0.026	1.568	1.453
1975	93	84.775	7.821	0.853	0.083	0.064	0.337	1.479	0.054	1.584	1.503
1976	99	93.382	7.787	0.876	0.081	0.043	0.338	1.508	0.059	1.759	1.696
1977	95	97.727	7.651	0.837	0.112	0.051	0.340	1.467	0.032	1.947	1.835
1978	95	99.444	7.645	0.855	0.107	0.039	0.346	1.405	0.034	1.982	1.929
1979	102	82.742	7.599	0.803	0.158	0.038	0.348	1.343	0.047	2.061	1.657
1980	103	71.567	7.718	0.773	0.191	0.036	0.350	1.296	0.078	2.215	1.466
1981	116	62.030	8.349	0.741	0.213	0.046	0.349	1.286	0.094	2.363	1.559
1982	110	61.893	8.831	0.714	0.235	0.051	0.347	1.277	0.134	2,440	1.817
1983	115	67.878	8.821	0.734	0.215	0.051	0.351	1.276	0.126	2.601	2.087
1984	113	85.933	8.870	0.783	0.179	0.038	0.361	1.293	0.129	2.469	2.117
1985	136	78.143	8.938	0.761	0.191	0.048	0.372	1.265	0.140	2.261	2.024
1986	130	83.756	9.382	0.733	0.216	0.050	0.379	1.249	0.176	2.416	2.856
1987	143	67.667	9.965	0.702	0.245	0.052	0.395	1.246	0.229	2.327	2.789
1988	150	67.078	10.069	0.717	0.237	0.045	0.396	1.251	0.237	2.334	2.919
1989	147	62.914	10.321	0.690	0.261	0.049	0.406	1.259	0.289	2.310	2.806
1990	131	66.377	10.337	0.682	0.276	0.043	0.419	1.270	0.308	2.270	2.852
All	2217	78.804	8.604	0.790	0.161	0.049	0.372	1.357	0.116	2.099	2.086

TABLE II

THE RANGE OF CONTINUOUS DEMAND CHARACTERISTICS (AND ASSOCIATED MODELS)

			Percentile		
Variable	0	25	50	75	100
Price	90 Yugo	79 Mercury Capri	87 Buick Skylark	71 Ford T-Bird	89 Porsche 911 Cabriole
	3.393	6.711	8.728	13.074	68.597
Sales	73 Toyota 1600CR	72 Porsche Rdstr	77 Plym. Arrow	82 Buick LeSabre	71 Chevy Impala
	.049	15.479	47.345	109.002	577.313
HP/Wt.	85 Plym. Gran Fury	85 Suburu DH	86 Plym. Caravelle	89 Toyota Camry	89 Porsche 911 Turbo
,	0.170	0.337	0.375	0.428	0.948
Size	73 Honda Civic	77 Renault GTL	89 Hyundai Sonata	81 Pontiac F-Bird	73 Imperial
	0.756	1.131	1.270	1.453	1.888
MP\$	74 Cad. Eldorado	78 Buick Skyhawk	82 Mazda 626	84 Pontiac 2000	89 Geo Metro
	8.46	15.57	20.10	24.86	64.37
MPG	74 Cad. Eldorado	79 BMW 528i	81 Dodge Challenger	75 Suburu DL	89 Geo Metro
	9	17	20	25	53

TABLE III

Results with Logit Demand and Marginal Cost Pricing (2217 Observations)

Variable	OLS Logit Demand	IV Logit Demand	OLS ln (price) on w
Constant	-10.068	-9.273	1.882
	(0.253)	(0.493)	(0.119)
HP/Weight*	-0.121	1.965	0.520
	(0.277)	(0.909)	(0.035)
Air	-0.035	1.289	0.680
	(0.073)	(0.248)	(0.019)
MP\$	0.263	0.052	
	(0.043)	(0.086)	
MPG*			-0.471
			(0.049)
Size*	2.341	2.355	0.125
0440	(0.125)	(0.247)	(0.063)
Trend	(0.125)	(0.247)	0.013
Irenu			(0.002)
D.J.	0.090	0.216	(0.002)
Price	-0.089	-0.216	
	(0.004)	(0.123)	
No. Inelastic			
Demands	1494	22	n.a.
$(+/-2 \ s.e.s)$	(1429–1617)	(7-101)	
R^2	0.387	n.a.	.656

TABLE IV

ESTIMATED PARAMETERS OF THE DEMAND AND PRICING EQUATIONS: BLP SPECIFICATION, 2217 OBSERVATIONS

Demand Side Parameters	Variable	Parameter Estimate	Standard Error	Parameter Estimate	Standard Error
Means ($\overline{\beta}$'s)	Constant	-7.061	0.941	-7.304	0.746
	HP / Weight	2.883	2.019	2.185	0.896
	Air	1.521	0.891	0.579	0.632
	MP\$	-0.122	0.320	-0.049	0.164
	Size	3.460	0.610	2.604	0.285
Std. Deviations (σ_{β} 's)	Constant	3.612	1.485	2.009	1.017
p	HP / Weight	4.628	1.885	1.586	1.186
	Air	1.818	1.695	1.215	1.149
	MP\$	1.050	0.272	0.670	0.168
	Size	2.056	0.585	1.510	0.297
Term on Price (α)	$\ln(y-p)$	43.501	6.427	23.710	4.079
Cost Side Parameters					
	Constant	0.952	0.194	0.726	0.285
	$\ln(HP/Weight)$	0.477	0.056	0.313	0.071
	Air	0.619	0.038	0.290	0.052
	$\ln(MPG)$	-0.415	0.055	0.293	0.091
	ln (Size)	-0.046	0.081	1.499	0.139
	Trend	0.019	0.002	0.026	0.004
	$\ln(q)$			-0.387	0.029

TABLE VI A Sample from 1990 of Estimated Own- and Cross-Price Semi-Elasticities: Based on Table IV (CRTS) Estimates

	Mazda 323	Nissan Sentra	Ford Escort	Chevy Cavalier	Honda Accord	Ford Taurus	Buick Century	Nissan Maxima	Acura Legend	Lincoln Town Car	Cadillac Seville	Lexus LS400	BMW 735i
323	- 125.933	1.518	8.954	9.680	2.185	0.852	0.485	0.056	0.009	0.012	0.002	0.002	0.000
Sentra	0.705	-115.319	8.024	8.435	2.473	0.909	0.516	0.093	0.015	0.019	0.003	0.003	0.000
Escort	0.713	1.375	-106.497	7.570	2.298	0.708	0.445	0.082	0.015	0.015	0.003	0.003	0.000
Cavalier	0.754	1.414	7.406	-110.972	2.291	1.083	0.646	0.087	0.015	0.023	0.004	0.003	0.000
Accord	0.120	0.293	1.590	1.621	- 51.637	1.532	0.463	0.310	0.095	0.169	0.034	0.030	0.005
Taurus	0.063	0.144	0.653	1.020	2.041	-43.634	0.335	0.245	0.091	0.291	0.045	0.024	0.006
Century	0.099	0.228	1.146	1.700	1.722	0.937	-66.635	0.773	0.152	0.278	0.039	0.029	0.005
Maxima	0.013	0.046	0.236	0.256	1.293	0.768	0.866	-35.378	0.271	0.579	0.116	0.115	0.020
Legend	0.004	0.014	0.083	0.084	0.736	0.532	0.318	0.506	-21.820	0.775	0.183	0.210	0.043
TownCar	0.002	0.006	0.029	0.046	0.475	0.614	0.210	0.389	0.280	-20.175	0.226	0.168	0.048
Seville	0.001	0.005	0.026	0.035	0.425	0.420	0.131	0.351	0.296	1.011	-16.313	0.263	0.068
LS400	0.001	0.003	0.018	0.019	0.302	0.185	0.079	0.280	0.274	0.606	0.212	-11.199	0.086
735 <i>i</i>	0.000	0.002	0.009	0.012	0.203	0.176	0.050	0.190	0.223	0.685	0.215	0.336	- 9.376

TABLE VII

SUBSTITUTION TO THE OUTSIDE GOOD

	Given a price increase, the percentage who substitute to the outside good (as a percentage of all who substitute away.)			
Model	Logit	BLP		
Mazda 323	90.870	27.123		
Nissan Sentra	90.843	26.133		
Ford Escort	90.592	27.996		
Chevy Cavalier	90.585	26.389		
Honda Accord	90.458	21.839		
Ford Taurus	90.566	25.214		
Buick Century	90.777	25.402		
Nissan Maxima	90.790	21.738		
Acura Legend	90.838	20.786		
Lincoln Town Car	90.739	20.309		
Cadillac Seville	90.860	16.734		
Lexus LS400	90.851	10.090		
BMW 735i	90.883	10.101		

TABLE VIII

A SAMPLE FROM 1990 OF ESTIMATED PRICE-MARGINAL COST MARKUPS AND VARIABLE PROFITS: BASED ON TABLE 6 (CRTS) ESTIMATES

	Price	Markup Over MC (p - MC)	Variable Profits (in \$'000's) q * (p - MC)
Mazda 323	\$5,049	\$ 801	\$18,407
Nissan Sentra	\$5,661	\$ 880	\$43,554
	, , , , , , , , , , , , , , , , , , , ,	+	4
Ford Escort	\$5,663	\$1,077	\$311,068
Chevy Cavalier	\$5,797	\$1,302	\$384,263
Honda Accord	\$9,292	\$1,992	\$830,842
Ford Taurus	\$9,671	\$2,577	\$807,212
Buick Century	\$10,138	\$2,420	\$271,446
Nissan Maxima	\$13,695	\$2,881	\$288,291
Acura Legend	\$18,944	\$4,671	\$250,695
Lincoln Town Car	\$21,412	\$5,596	\$832,082
Cadillac Seville	\$24,353	\$7,500	\$249,195
Lexus LS400	\$27,544	\$9,030	\$371,123
BMW 735 <i>i</i>	\$37,490	\$10,975	\$114,802

Supply

Firm's profit function:

$$\pi_f = \sum_{j \in \mathcal{J}_f} \left[\left(p_j - mc_j \right) q_j(\mathbf{p}) - FC_j \right]$$

Define **ownership**-matrix:

$$H_{jk} = \begin{array}{cc} 1, & \text{if } \exists f : \{j, k\} \subset \mathcal{J}_f; \\ 0, & \text{otherwise} \end{array} \quad j, k = 1, \dots, J$$

Let Ω be a matrix with elements $\Omega_{jk} = -\partial q_k / \partial p_j \cdot H_{jk}$ and assume Nash-Bertrand pricing, we get **FOCs**:

$$\mathbf{q}(\mathbf{p}) - \Omega(\mathbf{p} - \mathbf{mc}) = \mathbf{0} \Leftrightarrow \mathbf{p} = \mathbf{mc} + \Omega^{-1}\mathbf{q}(\mathbf{p})$$

Using supply side restrictions for estimation

Assume that **marginal cost** are given by:

$$mc_{jt} = w_{jt}\gamma + \omega_{jt}$$

This leads to:

$$\mathbf{p}_t = \mathsf{w}_{\mathbf{t}} \gamma + \Omega^{-1} \mathbf{q} \left(\mathbf{p}_{\mathbf{t}}
ight) + oldsymbol{\omega}_t$$

We can now construct additional moments, which are informative about both supply and demand.

$$E\left(\omega_{jt} \mid \mathbf{Z}_{t}\right) = \mathbf{0}$$

Comment:

- These moments can be very useful in identifying parameters of random coefficients.
- They require conduct assumption (FOCs from static price competition), which we may not want to make.

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

14.271 Industrial Organization I Fall 2022

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.