# Lecture Note 6 \* Special Distributions (Discrete and Continuous)

MIT 14.30 Spring 2006 Herman Bennett

# 15 Discrete Distributions

We have already seen the binomial distribution and the uniform distribution.

## 15.1 Hypergeometric Distribution

Let the RV X be the total number of "successes" in a sample of n elements drawn from a population of N elements with a total number of M "successes." Then, the pmf of X, called hypergeometric distribution, is given by:

$$f(x) = P(X = x) = \frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}} \quad \text{for } x = 0, 1, ..., n.$$
(40)

With mean and variance:

$$E(X) = \frac{nM}{N}$$
 and  $Var(X) = \left(\frac{N-n}{N-1}\right)\frac{nM}{N}\left(1-\frac{M}{N}\right)$ 

<sup>\*</sup>Caution: These notes are not necessarily self-explanatory notes. They are to be used as a complement to (and not as a substitute for) the lectures.

#### 15.2 Negative Binomial Distribution

The binomial distribution counts the number of successes in a fixed number of trials (n). Suppose that, instead, we count the number of trials required to get a fixed number of successes (r).

Let the RV X be the total number of trials required to get r "successes." The pmf of X, called negative binomial distribution, is given by:

$$f(x) = P(X = x) = {\binom{x-1}{r-1}} p^r (1-p)^{x-r} \qquad \text{for } x = r, r+1, r+2, \dots$$
(41)

With mean and variance:

$$E(X) = \frac{r}{p}$$
 and  $\operatorname{Var}(X) = \frac{r(1-p)}{p^2}$ 

•  $r = 1 \rightarrow$  Geometric distribution: "waiting for the success."

### 15.3 Poisson Distribution

A RV X is said to have a Poisson distribution with parameter  $\lambda$  ( $\lambda > 0$ ) if the pmf of X is:

$$X \sim \mathcal{P}(\lambda)$$
:  $f(x) = P(X = x) = \frac{e^{-\lambda}\lambda^x}{x!}$  for  $x = 0, 1, 2, ...$  (42)

With mean and variance:

$$E(X) = \lambda$$
 and  $Var(X) = \lambda$ 

•  $\lambda$  can be interpreted as a rate per unit of time or per unit of area.

• If  $X_1$  and  $X_2$  are independent RVs that have a Poisson distribution with means  $\lambda_1$  and  $\lambda_2$ , respectively, then the RV  $Y = X_1 + X_2$  has a Poisson distribution with mean  $\lambda_1 + \lambda_2$  (function of RVs, Lecture Note 5).

• Note: 
$$\sum_{x=0}^{\infty} f(x) = e^{-\lambda} \underbrace{\sum_{x=0}^{\infty} \frac{\lambda^x}{x!}}_{=e^{\lambda}} = 1.$$

• The Poisson distribution is not derived from a natural experiment, as with the two previous distributions.

**Example 15.1.** Let X be distributed Poisson  $(\lambda)$ . Compute the E(X).

**Example 15.2.** Assume the number of customers that visit a store daily is a random variable distributed  $Poisson(\lambda)$ . It is known that the store receives on average 20 customers per day, so  $\lambda = 20$ . What is the probability i) that tomorrow there will be 20 visits? ii) that during the next 2 days there will be 30 visits? iii) that tomorrow before midday there will be at least 7 visits?

#### 15.3.1 Poisson Distribution and Poisson Process

A common source of confusion...

A <u>Poisson process</u> with rate  $\lambda$  per unit time is a counting process that satisfies the following two properties:

i) The number of arrivals in every fixed interval of time of length t has a Poisson distribution for which the mean is  $\lambda t$ .

ii) The numbers of arrivals in every two disjoint time intervals are independent.

• Poisson process: Use  $\lambda t$  when your experiment covers t units.

**Example 15.3.** Answer Example 15.2 assuming now that the number of customers that visit a certain store follows a Poisson process (with the same average of 20 visits per day).

• Poisson v/s binomial approach. As  $n \to \infty$ ,  $p \to 0$ , and  $np \to \lambda$ , the limit of the binomial distribution  $\longrightarrow$  Poisson distribution.

# 16 Continuous Distributions

We have already seen the uniform distribution.

#### 16.1 Normal Distribution

A RV X is said to have a <u>Normal distribution</u> with parameters  $\mu$  and  $\sigma^2$  ( $\sigma^2 > 0$ ), if the pdf of X is:

$$X \sim N(\mu, \sigma^2)$$
:  $f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/(2\sigma^2)}$ , for  $-\infty < x < \infty$  (43)

With mean, variance, and MGF:

 $E(X) = \mu$ ,  $Var(X) = \sigma^2$ , and  $E(e^{tX}) = e^{t\mu + \frac{\sigma^2 t^2}{2}}$ 



- Why is the Normal distribution so important?
  - 1. The Normal distribution has a familiar bell shape. It gives a theoretical base to the empirical observation that many random phenomena obey, at least approximately, a normal probability distribution:

"The further away any particular outcome is from the mean, it is less likely to occur; this characteristic is symmetric whether the deviation is above or below the mean."

Examples: height or weight of individuals in a population; error made in measuring a physical quantity; level of protein in a particular seed; etc.

- 2. The Normal distribution gives a good approximation to other distributions, such as the Poisson and the Binomial.
- 3. The Normal distribution is analytically much more tractable that other bell shape distribution.
- 4. Central limit theorem (more on this later in LN7).
- 5. The Normal distribution is very helpful to represent population distributions (linked to point 1).
- Graphic properties.
  - 1. Bell shape and symmetric.
  - 2. Centered in the mean  $(\mu)$ , which coincides with the median.
  - 3. Dispersion/flatness only depends on the variance  $(\sigma^2)$ .
  - 4.  $P(\mu \sigma < X < \mu + \sigma) = 0.6826 \quad \forall \ \mu, \sigma^2!$
  - 5.  $P(\mu 2\sigma < X < \mu + 2\sigma) = 0.9544 \quad \forall \mu, \sigma^2!$

• If  $X \sim N(\mu, \sigma^2)$ , then the RV  $Z = (X - \mu)/\sigma$  is distributed  $Z \sim N(0, 1)$ . This distribution, N(0, 1), is called <u>standard normal</u> distribution, and sometimes its cdf is denoted  $F_Z(z) = \Phi(z)$ .

• The cdf of the normal distribution does not have an anaclitic solution and its values must be looked up in a N(0, 1) table (see attached table).

• Note that  $\Phi(z) = 1 - \Phi(-z)$ . In fact:  $F_Y(y) = 1 - F_Y(-y) \quad \forall Y \sim N(0, \sigma^2)$ .

• If  $X_i \sim N(\mu_i, \sigma_i^2)$  and all  $n X_i$  are mutually independent, then the RV H is distributed:

$$H = \sum_{i=0}^{n} a_i X_i + b_i \sim N(\sum_{i=0}^{n} a_i \mu_i + b_i , \sum_{i=0}^{n} a_i^2 \sigma_i^2).$$
(44)

**Example 16.1.** Using the tools developed in Lecture Note 5, derive the distribution of  $Z = (X - \mu)/\sigma$  as a transformation of the RV  $X \sim N(\mu, \sigma^2)$ .

**Example 16.2.** Compute E(X) where  $X \sim N(\mu, \sigma^2)$ .

**Example 16.3.** Assume that the RV X has a normal distribution with mean 5 and standard deviation 2. Find P(1 < X < 8) and P(|X - 5| < 2).

**Example 16.4.** Assume two types of light bulbs (A and B). The life of bulb type A is distributed normal with mean 100 (hours) and variance 16. The life of bulb type B is distributed normal with mean 110 (hours) and variance 30. i) What is the probability that bulb type A lasts for more than 110 hours? ii) If a bulb type A and a bulb type B are turned on at the same time, what is the probability that type A lasts longer than type B? iii) What is the probability that both bulbs last more than 105 hours?

• The binomial distribution can be approximated with a normal distribution. Rule of thumb:  $\min(np, n(1-p)) \ge 5$ .

## 16.2 LogNormal Distribution

If X is a RV and the ln(X) is distributed  $N(\mu, \sigma^2)$ , then X has a <u>lognormal distribution</u> with pdf (RV transformation):

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} \frac{1}{x} e^{-(\ln(x) - \mu)^2/(2\sigma^2)}, \quad \text{for } 0 < x < \infty, \quad -\infty < \mu < \infty, \quad \sigma > 0 \quad (45)$$
$$\ln(X) \sim N(\mu, \sigma^2) \longleftrightarrow X \sim LnN(\mu, \sigma^2)$$

With mean and variance:

$$E(X) = e^{\mu + (\sigma^2/2)}$$
 and  $Var(X) = e^{2(\mu + \sigma^2)} - e^{2\mu + \sigma^2}$ .

• If 
$$X \sim N(\mu, \sigma^2)$$
, then  $e^X \sim LnN(\mu, \sigma^2)$ .

#### 16.3 Gamma Distribution

A RV X is said to have a gamma distribution with parameters  $\alpha$  and  $\beta$  ( $\alpha, \beta > 0$ ) if the pdf of X is:

$$f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}, \qquad \text{for } 0 < x < \infty$$
(46)

where,

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx$$
 finite if  $\alpha > 0$ .

 $\Gamma(\alpha) = (\alpha - 1)!$  if  $\alpha$  is a positive integer, and  $\Gamma(0.5) = \pi$ .

With mean and variance:

$$E(X) = \alpha \beta$$
 and  $Var(X) = \alpha \beta^2$ 

• Assume a Poisson process. Let Y have a Poisson distribution with parameter  $\lambda$ . Denote X as the waiting time for the  $r^{th}$  event to occur. Then, X is distributed gamma with parameters  $\alpha = r$  and  $\beta = 1/\lambda$ .

#### 16.4 Exponential Distribution

A RV X is said to have an exponential distribution with parameter  $\beta$  ( $\beta > 0$ ) if the pdf of X is:

$$f(x) = \frac{1}{\beta} e^{-x/\beta}, \qquad \text{for } 0 < x < \infty$$
(47)

With mean and variance:

$$E(X) = \beta$$
 and  $Var(X) = \beta^2$ 

• The exponential distribution is a gamma distribution with  $\alpha = 1$ .

### 16.5 Chi-squared Distribution

A RV X is said to have an <u>chi-squared distribution</u> with parameter p > 0 (degrees of freedom) if the pdf of X is:

$$X \sim \chi^2_{(p)}: \qquad f(x) = \frac{1}{\Gamma(p/2)2^{p/2}} x^{p/2-1} e^{-x/2}, \qquad \text{for } 0 < x < \infty \text{ and } p \text{ integer.}$$
(48)

With mean and variance:

$$E(X) = p$$
 and  $Var(X) = 2p$ 

- The chi-squared distribution is a gamma distribution with  $\alpha = p/2$  and  $\beta = 2$ .
- If  $Y \sim N(0, 1)$ , then the RV  $Z = Y^2$  is distributed:

$$Z = Y^2 \sim \chi^2_{(1)} \qquad (\text{random variable transformation.}) \tag{49}$$

- If  $X_1 \sim \chi^2_{(p)}$  and  $X_2 \sim \chi^2_{(q)}$  are independent, then the RV  $H = X_1 + X_2$  is distributed:  $H = X_1 + X_2 \sim \chi^2_{(p+q)}$  (random vector transformation). (50)
- Extensively used in Econometrics.

• Concept of single distribution vs. family of distributions (indexed by one or more parameter).

#### 16.6 Bivariate Normal Distribution

A bivariate random vector  $(X_1, X_2)$  is said to have a <u>bivariate normal distribution</u> if the pdf of  $(X_1, X_2)$  is:

$$f(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-b/(2(1-\rho^2))}$$
(51)

$$\rho = \operatorname{Corr}(X_1, X_2)$$
$$b \equiv \frac{(x_1 - \mu_1)^2}{\sigma_1^2} - \frac{2\rho(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1\sigma_2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2}$$

•  $\rho = 0 \longleftrightarrow X_1$  and  $X_2$  independent (only in the normal case)  $\longleftrightarrow f_{X_1,X_2}(x_1,x_2) = f_{X_1}(x_1)f_{X_2}(x_2).$