14.30 PROBLEM SET 6 SUGGESTED ANSWERS

Problem 1

a. Let \widetilde{X} denote the sum of the weight of the 100 sampled coins: $\widetilde{X}=$ $\sum_{i=1}^{100} X_{i}$. Now, \widetilde{X} must be distributed normally, because it is a linear combination of independent normal random variables. Then $E(\widetilde{X})=E\left(\sum_{i=1}^{100} X_{i}\right)=$ $\sum_{i=1}^{100} E\left(X_{i}\right)=12800$, and $\operatorname{Var}(\widetilde{X})=\operatorname{Var}\left(\sum_{i=1}^{100} X_{i}\right)=\sum_{i=1}^{100} \operatorname{Var}\left(X_{i}\right)=100$, since the coins are assumed to be independent. Thus, if the Master is honest, $\widetilde{X} \sim N(12800,100)$.

We must choose some remedy R, such that we punish the Master whenever $\tilde{X} \leq 12800-R$, and we want the probability that an honest Master is punished be no greater than 0.01 . So we want to find R that satisfies

$$
\begin{aligned}
\operatorname{Pr}(\widetilde{X} \leq 12800-R) & =0.01 \\
\operatorname{Pr}\left(\frac{\widetilde{X}-12800}{10} \leq-\frac{R}{10}\right) & =0.01 \\
\operatorname{Pr}\left(Z \leq-\frac{R}{10}\right) & =0.01
\end{aligned}
$$

We can use our table to find that $-\frac{R}{10}=-2.33$, which implies $R=23$.
b. Under the dishonest master, $\widetilde{X} \sim N(12790,100)$. For $R=23$, the probability of catching this master is $\operatorname{Pr}(\widetilde{X} \leq 12777)=\operatorname{Pr}\left(\frac{\tilde{X}-12800}{10} \leq-\frac{12777-12800}{10}\right)=$ $\operatorname{Pr}(Z \leq-1.3) \approx 0.097$. Thus, the chance that this dishonest Master eludes punishment is greater than 90%.

Problem 2
a. $\quad S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$, so $E\left(S^{2}\right)=E\left(\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right)$

$$
\begin{aligned}
E\left(S^{2}\right) & =E\left(\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right) \\
& =\frac{1}{n-1} E\left(\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right) \\
& =\frac{1}{n-1} E\left(\sum_{i=1}^{n}\left(X_{i}^{2}-2 X_{i} \bar{X}+\bar{X}^{2}\right)\right) \\
& =\frac{1}{n-1} E\left(\sum_{i=1}^{n} X_{i}^{2}-2 \bar{X} \sum_{i=1}^{n} X_{i}+n \bar{X}^{2}\right) \\
& =\frac{1}{n-1} E\left(\sum_{i=1}^{n} X_{i}^{2}-2 n \bar{X}^{2}+n \bar{X}^{2}\right) \\
& =\frac{1}{n-1} E\left(\sum_{i=1}^{n} X_{i}^{2}-n \bar{X}^{2}\right) \\
& =\frac{1}{n-1}\left(\sum_{i=1}^{n} E\left(X_{i}^{2}\right)-n E\left(\bar{X}^{2}\right)\right) \\
& =\frac{1}{n-1}\left(n \sigma^{2}+n \mu^{2}-n\left(\operatorname{Var}(\bar{X})+\mu^{2}\right)\right) \\
& =\frac{1}{n-1}\left(n \sigma^{2}-n \frac{\sigma^{2}}{n}\right) \\
& =\frac{n-1}{n-1}\left(\sigma^{2}\right) \\
& =\sigma^{2}
\end{aligned}
$$

b. To show $\bar{X} \xrightarrow{p} \mu$, we want to prove that for any $\varepsilon>0$, as $n \rightarrow \infty$, $\operatorname{Pr}(|\bar{X}-\mu|<\varepsilon) \rightarrow 1$. We will denote the mean of a random sample of
size n by \bar{X}_{n}.

$$
\begin{aligned}
\operatorname{Pr}\left(\left|\bar{X}_{n}-\mu\right|<\varepsilon\right) & =\operatorname{Pr}\left(-\varepsilon<\bar{X}_{n}-\mu<\varepsilon\right) \\
& =1-2 \operatorname{Pr}\left(\bar{X}_{n}-\mu>\varepsilon\right) \\
& =1-2 \operatorname{Pr}\left(\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}>\frac{\varepsilon}{\sigma / \sqrt{n}}\right) \\
& =1-2 \operatorname{Pr}\left(Z>\sqrt{n} \frac{\varepsilon}{\sigma}\right) \\
& =1-2\left(1-\operatorname{Pr}\left(Z<\sqrt{n} \frac{\varepsilon}{\sigma}\right)\right) \\
& =-1+2 \operatorname{Pr}\left(Z<\sqrt{n} \frac{\varepsilon}{\sigma}\right)
\end{aligned}
$$

Now, as $n \rightarrow \infty$, for any $\varepsilon>1, \Phi\left(\sqrt{n} \frac{\varepsilon}{\sigma}\right) \rightarrow 1$, so $\operatorname{Pr}\left(\left|\bar{X}_{n}-\mu\right|<\varepsilon\right) \rightarrow$ $-1+2=1$.

Problem 3

a. Expand the expression for the price of the stock:

$$
S_{t}=S_{0}+\sum_{i=1}^{t} X_{i}
$$

Thus the change in the stock's price after 700 periods is

$$
\Delta S=S_{700}-S_{0}=\sum_{i=1}^{700} X_{i}
$$

b. Define

$$
\bar{X}=\frac{1}{700} \sum_{i=1}^{700} X_{i}
$$

Since 700 is "large," the Central Limit Theorem implies that

$$
\begin{aligned}
\frac{\sqrt{700}(\bar{X}-\mu)}{\sigma} & \sim N(0,1) \\
\mu & =0.39(1)+0.20(0)+0.41(-1) \\
& =-0.02 \\
E\left(X_{i}^{2}\right) & =0.39(1)^{2}+0.20(0)^{2}+0.41(-1)^{2} \\
& =0.80 \\
\sigma^{2} & =0.80-(-0.02)^{2} \\
& =0.7996
\end{aligned}
$$

Therefore

$$
\bar{X} \sim N\left(-0.02, \frac{0.7996}{700}\right)
$$

c. The probability that the stock is up at least 10 over the first 700 periods can be calculated as follows:

$$
\begin{aligned}
\operatorname{Pr}\left(\sum_{i=1}^{700} X_{i} \geq 10\right) & =\operatorname{Pr}\left(\bar{X} \geq \frac{1}{70}\right) \\
& =\operatorname{Pr}\left(\frac{\bar{X}+0.02}{\sqrt{0.7996 / 700}} \geq \frac{\frac{1}{70}+0.02}{\sqrt{0.7996 / 700}}\right) \\
& =\operatorname{Pr}(Z \geq 1.01) \\
& =1-\operatorname{Pr}(Z \leq 1.01) \\
& \approx 0.156
\end{aligned}
$$

Problem 4

We can denote the weights of each of the hundred booklets as $X_{1}, \ldots X_{100}$. This is a random sample from a population with mean 1 and standard deviation 0.05 . We want to know the probability that the sum of the X_{i} is greater than 100.4:

$$
\operatorname{Pr}\left(\sum_{i=1}^{100} X_{i} \geq 100.4\right)=\operatorname{Pr}(\bar{X} \geq 1.004)
$$

The sample mean has the properties such that

$$
\begin{aligned}
E(\bar{X}) & =E\left(X_{i}\right)=1 \\
\text { St. Dev. }(\bar{X}) & =\sqrt{\operatorname{Var}(\bar{X})}=\sqrt{\frac{\operatorname{Var}\left(X_{i}\right)}{100}}=\frac{\operatorname{St.\operatorname {Dev}(X_{i})}}{10}=0.005
\end{aligned}
$$

Then, by the central limit theorem, we know that (approximately)

$$
\bar{X} \sim N\left(1,(0.005)^{2}\right)
$$

Therefore,

$$
\begin{aligned}
\operatorname{Pr}(\bar{X} \geq 1.004) & =\operatorname{Pr}\left(Z \geq \frac{1.004-1}{0.005}\right) \\
& =\operatorname{Pr}(Z \geq 0.8) \\
& \approx 0.2119
\end{aligned}
$$

where Z is a standard normal random variable.

