14.30 PROBLEM SET 9 SUGGESTED ANSWERS

Problem 1

For parts (a)-(g), please refer to the relevant sections in the handouts/textbooks.
(h) False. With the knowledge of the distribution of a statistic under the null hypothesis, we can calculate only α, but not β.
(i) False. In particular, there are hypothesis tests for which one can form a GLRT where no optimal test exists, so GLRT could not be optimal in that case.
(j) Yes. Hypothesis tests are typically constructed by using a test statistic T. The null hypothesis is rejected if T lies in some interval or if T lies outside of some interval. The interval is chosen to make the test have a desired significance level. This procedure is in essence the same as the construction of the confidence interval.
(k) Recall that α and β are calculated under different distributions (under the null and under the alternative hypothesis). There is no reason that it always must be $\alpha+\beta=1$, although it is possible under some special circumstances. Also, in general, it is not possible $\alpha=\beta=0$, again in some cases we might have $\alpha=0$ or $\beta=0$, but in many cases neither is possible.

NOTE: We might have some cases that $\alpha=\beta=0$ under very special and unrealistic situation (can you think of an example of such case ?), and in that case, the hypothesis test becomes trivial and uninteresting. (why ?)

Problem 2

(a) The probability of committing a Type I error is calculated as follows:

$$
\begin{aligned}
P(\text { Type I error }) & =P\left(\text { reject } H_{0} \mid H_{0} \text { is true }\right) \\
& =P(Y \geq 3.20 \mid \lambda=1) \\
& =\int_{3.20}^{\infty} e^{-y} d y \\
& =0.04
\end{aligned}
$$

(b) The probability of committing a Type II error when $\lambda=4 / 3$ is calculated as follows:

$$
\begin{aligned}
P(\text { Type II error }) & =P\left(\text { don't reject } H_{0} \mid H_{1}\right. \text { is true) } \\
& =P\left(Y \leq 3.20 \left\lvert\, \lambda=\frac{4}{3}\right.\right) \\
& =\int_{0}^{3.20} \frac{3}{4} e^{-3 y / 4} d y \\
& \left.=\int_{0}^{2.4} e^{-u} d u \text { (change in variable: } u=\frac{3}{4} y\right) \\
& =0.91
\end{aligned}
$$

Problem 3
(a) i) We first find formulas for α and β in terms of k :

$$
\begin{aligned}
\alpha & =P(\text { Type I error })=P\left(\text { reject } H_{0} \mid H_{0} \text { is true }\right) \\
& =\int_{0}^{k} f_{0}(x) d x=\int_{0}^{k} 2 x d x \\
& =k^{2} \\
\beta= & P(\text { Type II error })=P\left(\text { don't reject } H_{0} \mid H_{A} \text { is true }\right) \\
= & \int_{k}^{1} f_{A}(x) d x=\int_{k}^{1}(2-2 x) d x \\
= & k^{2}-2 k+1
\end{aligned}
$$

Note that we were able to write down expressions for α and β because with only 1 observation x, we knew that x had to be our statistic, and furthermore our test would be of the form "reject H_{0} for $x<k$ " because we are more likely to have observed a small x if H_{A} is true.

$$
\begin{aligned}
\min _{k}(\alpha+\beta) & =\min _{k}\left(2 k^{2}-2 k+1\right) \\
\frac{\partial\left(2 k^{2}-2 k+1\right)}{\partial k} & =4 k-2=0
\end{aligned}
$$

So $\alpha+\beta$ is minimized at $k=1 / 2$.
ii) $\alpha+\beta=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$.
iii) With $k=1 / 2$, the testing procedure is then to reject the null for $x<k=1 / 2$. So we do not reject the null for $x=0.6$
(b) i) Find k such that
$\int_{0}^{k} f_{0}(x) d x=\int_{0}^{k} 2 x d x=k^{2}=0.1 \quad[$ why 0.1, when the restriction is $\alpha \leq 0.10 ?]$ this implies $k=\sqrt{0.1}$.
ii) Then

$$
\begin{aligned}
\beta & =\int_{\sqrt{0.1}}^{1}(2-2 x) d x \\
& =\left[2 x-x^{2}\right]_{\sqrt{0.1}}^{1} \\
& =1.1-2 \sqrt{0.1}
\end{aligned}
$$

iii) For $x=0.4$, we do not reject because

$$
x=0.4>k=\sqrt{0.1}
$$

(c) With ten observations, you could use, for instance

$$
T(X)=\bar{X}
$$

and reject the if $\bar{X}<k$ (for appropriate k).

Problem 4

We have two simple hypotheses, so we should be able to derive an optimal test statistic using the Neyman-Pearson lemma. The lemma tells us that the best test can be achieved by constructing the test statistic $T=\frac{f_{1}\left(x_{1}, \ldots, x_{n} \mid \mu=1\right)}{f_{0}\left(x_{1}, \ldots, x_{n} \mid \mu=0\right)}$ and then rejecting the null $(\mu=0)$ whenever $T>k$, where k is the critical value such that the probability of type I error is equal to $\alpha=0.005$. We know that the likelihood function is

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{n} \mid \mu\right) & =\prod_{i=1}^{n} f\left(x_{i} \mid \mu\right) \\
& =\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} e^{-\frac{\left(x_{i}-\mu\right)^{2}}{2}} \\
& =(2 \pi)^{-\frac{n}{2}} e^{-\frac{1}{2} \sum\left(x_{i}-\mu\right)^{2}}
\end{aligned}
$$

Then we have

$$
\begin{aligned}
T & =\frac{(2 \pi)^{-\frac{n}{2}} e^{-\frac{1}{2} \sum\left(x_{i}-1\right)^{2}}}{(2 \pi)^{-\frac{n}{2}} e^{-\frac{1}{2} \sum x_{i}^{2}}} \\
& =e^{-\frac{1}{2} \sum\left(-2 x_{i}+1\right)} \\
& =e^{n \bar{X}-\frac{n}{2}}
\end{aligned}
$$

Thus we should reject the null hypothesis if $e^{n \bar{X}-\frac{n}{2}}>k$, or equivalently, reject the null if $\bar{X}>\frac{2 \ln (k)+n}{2 n}$. Thus we have a test of the form "reject if $\bar{X}>c^{\prime \prime}$ for some $c(n)$, and we know how to determine the proper value of c for our desired confidence level. We want $\operatorname{Pr}(\bar{X}>c \mid \mu=0)=\alpha=0.005$,
so we use

$$
\begin{aligned}
0.005 & =\operatorname{Pr}(\bar{X}>c \mid \mu=0) \\
& =\operatorname{Pr}\left(\left.\frac{\bar{X}-0}{\sqrt{\frac{1}{n}}}>\frac{c-0}{\sqrt{\frac{1}{n}}} \right\rvert\, \mu=0\right) \\
& =\operatorname{Pr}(Z>\sqrt{n} c)
\end{aligned}
$$

From the Z-table, I find that we must have $\sqrt{n} c=1.65$, so $c=\frac{1.65}{\sqrt{n}}$. Thus the final form of our test is that we reject the null if $\bar{X}>\frac{1.65}{\sqrt{n}}$.

Problem 5

(a) $H_{0}: \mu=7$ versus $H_{1}: \mu=6$.
(b) The test statistics is sample mean: $T=\bar{X}$. And under the null $\bar{X} \sim N(7,1 / \sqrt{10})$, and under the alternative $\bar{X} \sim N(7,1 \sqrt{10})$. We reject H_{0} if

$$
\begin{aligned}
\bar{X} & <7-\frac{1}{\sqrt{10}} \Phi^{-1}(0.05) \\
& =7-\frac{1}{\sqrt{10}}(1.65) \\
& =7-(0.32)(1.65) \\
& =6.47
\end{aligned}
$$

So we reject H_{0} because $\bar{X}=6.2<6.47$.
(c)

$$
\begin{aligned}
\text { Power } & =1-\beta \\
& =1-P\left(\text { don't reject } H_{0} \mid H_{A} \text { is true }\right) \\
& =1-\left[1-\Phi\left(\frac{6.47-6}{1 / \sqrt{10}}\right)\right] \\
& =\Phi\left(\frac{6.47-6}{1 / \sqrt{10}}\right) \\
& =\Phi(1.49) \\
& =0.93
\end{aligned}
$$

(d) With unknown σ^{2}, the test statistic under the null is

$$
T=\frac{\bar{X}-\mu}{S / \sqrt{n}} \sim t_{(10-1)}
$$

we reject H_{0} if

$$
\begin{aligned}
\frac{\bar{X}-\mu}{S / \sqrt{n}} & <t_{9}(\alpha), \text { where } \alpha \text { is a significance level } \\
& \Leftrightarrow \\
\frac{6.2-7}{\sqrt{1.5} / \sqrt{10}} & =-2.5<-1.83 \text { (from the table) }
\end{aligned}
$$

So we reject H_{0}.
(e) In this case, the test then becomes two-sided $\left[H_{0}: \mu=7\right.$ versus $H_{1}: \mu \neq 7$], so all the procedures used before should be modified accordingly.

Problem 6

Suppose $X_{i} \sim N\left(\mu_{X}, 1\right), i=1, \ldots, n_{X}$ and $Z_{j} \sim N\left(\mu_{Z}, 1\right), j=1, \ldots, n_{Z}$ and all the observations are independent. You want to test the hypothesis that the means are equal against the alternative that they are not. Use the statistic

$$
T=\frac{(\bar{X}-\bar{Z})}{\sqrt{1 / n_{X}+1 / n_{Z}}}:
$$

(a) The test statistic T can take any real number, and if the absolute value of T is 'sufficiently' different from 0 , we will reject the null hypothesis that the means are equal.
(b) Note that T is a linear transformation of $\left(n_{X}+n_{Z}\right)$ normal random variables - hence, we can guess that $T \sim N(E[T], \operatorname{Var}[T])$. The mean and variance of T are:

$$
\begin{aligned}
E[T] & =E\left[\frac{(\bar{X}-\bar{Z})}{\sqrt{1 / n_{X}+1 / n_{Z}}}\right] \\
& =\frac{1}{\sqrt{1 / n_{X}+1 / n_{Z}}} E[(\bar{X}-\bar{Z})] \\
& =\frac{1}{\sqrt{1 / n_{X}+1 / n_{Z}}}(E[\bar{X}]-E[\bar{Z}]) \\
& =\frac{1}{\sqrt{1 / n_{X}+1 / n_{Z}}}\left(E\left[\frac{1}{n_{X}} \sum X_{i}\right]-E\left[\frac{1}{n_{Z}} \sum Z_{j}\right]\right) \\
& =\frac{1}{\sqrt{1 / n_{X}+1 / n_{Z}}}\left(\mu_{X}-\mu_{Z}\right) \\
& =0 \quad\left(\text { under the null } \mu_{X}=\mu_{Z}\right)
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}[T] & =\operatorname{Var}\left[\frac{(\bar{X}-\bar{Z})}{\sqrt{1 / n_{X}+1 / n_{Z}}}\right] \\
& =\left(\frac{1}{1 / n_{X}+1 / n_{Z}}\right) \operatorname{Var}[\bar{X}-\bar{Z}] \\
& =\left(\frac{1}{1 / n_{X}+1 / n_{Z}}\right)(\operatorname{Var}[\bar{X}]+\operatorname{Var}[\bar{Z}]) \text { (independence) } \\
& =\left(\frac{1}{1 / n_{X}+1 / n_{Z}}\right)\left(\operatorname{Var}\left[\frac{1}{n_{X}} \sum X_{i}\right]+\operatorname{Var}\left[\frac{1}{n_{Z}} \sum Z_{j}\right]\right) \\
& =\left(\frac{1}{1 / n_{X}+1 / n_{Z}}\right)\left(\frac{1}{n_{X}^{2}} n_{X}(1)+\frac{1}{n_{Z}^{2}} n_{Z}(1)\right) \\
& =\left(\frac{1}{\frac{n_{X}+n_{Z}}{n_{X} n_{Z}}}\right)\left(\frac{1}{n_{X}}+\frac{1}{n_{Z}}\right) \\
& =\left(\frac{n_{X} n_{Z}}{n_{X}+n_{Z}}\right)\left(\frac{n_{X}+n_{Z}}{n_{X} n_{Z}}\right) \\
& =1
\end{aligned}
$$

So $T \sim N(0,1)$.
(c) Since the distribution of the test statistic T is the standard normal under the null, we reject the null when $|t|>z_{\alpha / 2}$.

Problem 7

(a) Consider the test statistic $T=\frac{S_{X}^{2}}{S_{Y}^{2}}$, where $S_{X}^{2}=\frac{1}{n_{X}-1} \sum_{i=1}^{n_{X}}\left(X_{i}-\bar{X}\right)^{2}$ and S_{Y}^{2} is defined analogously. We know that $\frac{\left(n_{X}-1\right) S_{X}^{2}}{\sigma_{X}^{2}} \sim \chi_{\left(n_{X}-1\right)}^{2}$ and $\frac{\left(n_{Y}-1\right) S_{Y}^{2}}{\sigma_{Y}^{2}} \sim \chi_{\left(n_{Y}-1\right)}^{2}$, and that these two statistics are independent. Under the null hypothesis, $\sigma_{X}^{2}=\sigma_{Y}^{2}$, so we can rewrite T as $\frac{\frac{\left(n_{X}-1\right) S_{X}^{2}}{\sigma_{X}^{2}\left(n_{X}-1\right)}}{\frac{\left(n_{Y}-1\right) S_{Y}^{2}}{\sigma_{Y}^{2}\left(n_{Y}-1\right)}} \sim$ $F\left(n_{X}-1, n_{Y}-1\right)$. So we reject for $T>c$, where c is defined by $\operatorname{Pr}\left(F\left(n_{X}-1, n_{Y}-1\right)>c\right)=$ $\alpha=0.10$.
(b) We have $n_{X}=6, n_{Y}=4, \bar{X}=12, \bar{Y}=2.75, \sum_{i=1}^{n_{X}}\left(X_{i}-\bar{X}\right)^{2}=$ 118, and $\sum_{i=1}^{n_{Y}}\left(Y_{i}-\bar{Y}\right)^{2}=8.75$. So $T=\frac{118 / 5}{8.75 / 3}=8.09$. From the F-table, our critical value, c, is equal to 5.31 , so we reject the null hypothesis.

