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Lecture Note 7 ∗ 

Random Sample 

MIT 14.30 Spring 2006 

Herman Bennett 

17 Definitions 

17.1 Random Sample 

Let X1, ..., Xn be mutually independent RVs such that fXi (x) = fXj (x) ∀ i = j. Denote 

fXi (x) = f (x). Then, the collection X1, ..., Xn is called a random sample of size n from the 

population f (x).

Examples: 

– Rolling a die n times. 

– Selecting 10 MIT students and measuring their height. 

• Sampling with and without replacement: Sampling from a large population (“nearly 

independent”). 

• Alternatively, this collection (or sampling), X1, ..., Xn, is also called independent and 

identically distributed random variables with pmf/pdf f (x), or iid sample for short. 

• Note that the difference between X and x still holds (we continue to deal with random 

variables). 

∗Caution: These notes are not necessarily self-explanatory notes. They are to be used as a complement 

to (and not as a substitute for) the lectures. 

1




Herman Bennett LN7—MIT 14.30 Spring 06


17.2 Statistic 

Let the RVs X1, X2, ..., Xn be a random sample of size n from the population f (x). Then, 

any real-valued function T = r(X1, X2, ..., Xn) is called a statistic. 

• Remember that X1, X2, ..., Xn are RVs, and therefore T is a RV too, which can take any 

real value t with pmf/pdf fT (t). 

17.3 Sample Mean 

¯The sample mean, denoted by Xn, is a statistic defined as the arithmetic average of the 

values in a random sample of size n. 

¯ X1 + X2 + ... + Xn 1 
Xn = = 

n�
Xi (52) 

n n 
i=1 

17.4 Sample Variance 

The sample variance, denoted by S2 , is a statistic defined as: n

S2 
n =


1

n� 

n − 1 
i=1 

(Xi − X̄)2 (53) 

1The sample standard deviation is the statistic defined by Sn = 
�

S2 .n

• Remember, the observed value of the statistic is denoted by lowercase letters. So, 

¯ 2 ¯x, s , and s denote observed values of the RVs X, S2 , and S. 

σ2 and ˆ1The sample variance and the sample standard deviation are sometimes denoted by ˆ σ, respec

tively. 
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18 Important Properties of the Sample Mean Distri


bution and the Sample Variance Distribution 

¯18.1 Mean and Variance of X and S2 

Let X1, ..., Xn be a random sample of size n from a population f (x) with mean µ (finite) 

and variance σ2 (finite). Then, 

σ2 
¯ ¯E(X) = µ, E(S2) = σ2 , V ar(X) = , and V arn→∞(S2 0. (54)) →

n 

Standard Error: 
�

V ar
� 
X̄

�• 

Example 18.1. Show the first 3 statements of (54). 
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18.2	 The Special Case of a Random Sample from a Normal Pop

ulation 

Let X1, ..., Xn be a random sample of size n from a N (µ, σ2) population. Then, 

¯a.	 X and S2 are independent random variables. (55) 

¯b.	 X has a N (µ, σ2/n) distribution. (56) 
(n − 1)S2 

c. has a χ(
2 
n−1) distribution.	 (57)

σ2 

Example 18.2. Show (56). 

18.3	 Limiting Results (n → ∞ ) 

These concepts are extensively used in econometrics. 

18.3.1	 (Weak) Law of Large Numbers 

Let X1, ..., Xn be independent and identically distributed (iid ) random variables with 
¯ 1E(Xi) =	µ (finite) and Var(Xi) = σ2 (finite). Define Xn = 

n 

�n Xi. Then, for every i=1 

ε > 0, 
¯lim P ( Xn − µ < ε) = 1 . (58) 

n→∞ 
| | 

This condition is denoted, 

Xn	
p¯ ¯(Xn converges in probability to µ.) (59)−→ µ 
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Example 18.3. Prove (58) using Chebyshev’s inequality. Note that S2 p 
can be −→ σ2 

proved in a similar way. 

18.3.2 Central Limit Theorem (CLT) 

Let X1, ..., Xn be independent and identically distributed (iid ) random variables with 
¯ 1E(Xi) = µ (finite) and Var(Xi) = σ2 (finite). Define Xn = 

n 

�n Xi. Then, for any i=1 

value x ∈ (−∞, ∞), 

x¯� √
n(Xn − µ) 

� � 
√1

2π
e−x2/2lim P < x = = Φ(x) (60) 

n→∞ σ −∞ 

Where Φ( ) is the cdf of a standard normal. 

In words...From (56) we know that if the Xis are normally distributed, the sample 
¯mean statistic, Xn, will also be normally distributed. (60) says that if n → ∞, the func

¯
tion of the sample mean statistic, 

√
n(Xn−µ) , will be normally distributed regardless of the 

σ 

distribution of the Xis. 

In practice(1)...If n is sufficiently large, we can assume the distribution of a function of 
¯

Xn, 
√

n(Xn−µ)¯ , without knowing the underlining distribution of the random sample fXi (x).
σ 

[Very powerful result!] 
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√
n( ¯

In practice(2)...Define Z = X
σ 
n−µ) . If n is sufficiently large, then 

xn − µ) 
� 

≈ Φ 

� √
n(¯

� √
n(¯ xn − µ) 

�
FZ (61)

σ σ 

¯√
n(Xn − µ) a a 

⇓ 

¯∼ N (0, 1) or Xn ∼ N (µ, σ2/n) (a : for approximately) (62)
σ 

...regardless of the pmf/pdf fXi (x) ! 

• The larger the value of n is, the better the approximation. But, how much is “sufficiently 

large”? No straight forward rule. It will depend on the underlying distribution fXi (x). The 

less bell-shaped fXi (x) is, the large the n required. Having said this, some authors suggest 

the following rule of thumb: n ≥ 30. 

• Magnifying glass (see simulations). 

Example 18.4. An astronomer is interested in measuring the distance from his observatory 

to a distant star (in light years). Due to changing atmospheric conditions and measuring 

errors, each time a measurement is made it will not yield the exact distance. As a result, 

the astronomer plans to make several measures and then use the average as his estimated 

distance. He believes that measurement values are iid with mean d (the actual distance) 

and variance 4 (light years). How many measurements does he need to perform to be 

reasonably sure that his estimated distance is accurate to within ±0.5 light years? 
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