14.30 Exam \#1 Solutions
 Thursday, October 7, 2004

Guy Michaels

Question 1:
A. True/False/Uncertain:
i. False. Two events can be neither disjoint nor exhaustive. For example, consider the outcome of a single fair die: $\{1,2,3,4,5,6\}$. The events $A=\{1,2\}$ and $B=\{1,3\}$ are not disjoint, since: $A \cap B=\{1\} \neq \phi$. They are also not exhaustive because: $A \cup B=\{1,2,3\} \neq\{1,2,3,4,5,6\}$
ii. False. For example consider two (independent) tosses of a fair coin, where A is an indicator for heads in the first toss and B is an indicator for heads in the second toss. A and B are clearly independent, but: $\operatorname{Pr}(A \cap B)=\frac{1}{4} \neq 0$. Also: $\operatorname{Pr}(A \cup B)=$ $\frac{3}{4}, \operatorname{Pr}(A)=\operatorname{Pr}(B)=\frac{1}{2}$ so: $\frac{3}{4}=\operatorname{Pr}(A \cup B) \neq \operatorname{Pr}(A)+\operatorname{Pr}(B)=1$.
iii. False. Using events A and B defined in the previous answer $\operatorname{Pr}(A)=\frac{1}{2}, \operatorname{Pr}(A \cap B)-$ $\operatorname{Pr}\left(A \cap B^{c}\right)=\frac{1}{4}-\frac{1}{4}=0$ so: $\operatorname{Pr}(A) \neq \operatorname{Pr}(A \cap B)-\operatorname{Pr}\left(A \cap B^{c}\right)$.
iv. True. $1=\int_{0}^{1} \int_{0}^{1} f_{X, Y}(x, y) d x d y=\int_{0}^{1} \int_{0}^{1} k e^{x+y} d x d y=k(e-1)^{2} \Rightarrow f_{X, Y}(x, y)=$ $\left\{\begin{array}{c}(e-1)^{-2} e^{x+y} \text { if } x, y \in[0,1] \\ 0 \text { otherwise }\end{array}\right.$. For $x \in[0,1]: f_{X}(x)=\int_{0}^{1}(e-1)^{-2} e^{x+y} d y=e^{x}$ $(e-1)^{-1}$ and otherwise $f_{X}(x)=0$. Similarly for $y \in[0,1]: f_{Y}(y)=e^{y}(e-1)^{-1}$ and otherwise: $f_{Y}(y)=0$. Thus: $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$ so X and Y are independent. A shortcut also exists: notice that you can write: $f_{X, Y}(x, y)=k e^{x+y}=g_{X}(x) h_{Y}(y)=$ $\left(k_{1} e^{x}\right)\left(k_{2} e^{y}\right)$ so X and Y are independent.
v. False. The statement is true for the pmf but not for a pdf. For example if $X \sim U[0,1]$ then $f_{X}(0.5)=1$ but $\operatorname{Pr}(X=0.5)=0$.
vi. False. Suppose: $\operatorname{Pr}(X=0)=\operatorname{Pr}(X=1)=0.5$ and $Y=X$ then: $F_{X}(0.5)=0.5 \neq$ $F_{X \mid Y}(0.5 \mid 1)=1$. The statement is true only for two independent random variables.
B. To calculate the first probability we need to get the correct limits of integration: $P(X+Y<1$ and $Y<0.5)=\int_{0}^{0.5} \int_{0}^{y}(8 x y) d x d y$. The second probability requires integrating over two sections: $P(X+Y<1$ and $Y<0.6)=\int_{0}^{0.5} \int_{0}^{y}(8 x y) d x d y+$ $\int_{0.5}^{0.6} \int_{0}^{1-y}(8 x y) d x d y$.

Question 2:
a. For the first two places: sample two letters with repetition: 26^{2}. For the last three places: sample three numbers with repetition: 10^{3}. Total number of different plates: $26^{2} 10^{3}=676000$.
b. Sample two letters without repetition: $\binom{26}{2}$. Sample three numbers without repetition: $\binom{10}{3}$. Arrange the five symbols: 5!. Total number of different plates: $\binom{26}{2}\binom{10}{3} 5$! $=$ 4680000.
c. We have three possible locations for "777": beginning, middle or end. For each of these locations we need to sample two letters with repetition 26^{2}. so the numerator is:: $3 \cdot 26^{2}$. In the denominator we have to choose two slots for letters: $\binom{5}{2}$. For each slot with a letter there are 26 possible letters and for each number slot there are 10 possible numbers. The denominator is therefore: $\binom{5}{2} 26^{2} 10^{3}=6.76 \times 10^{6}$. The answer is that the probability of "777" is: $\frac{3 \cdot 26^{2}}{\binom{5}{2} 26^{2} 10^{3}}=\frac{3}{10000}$.

Question 3:
a. $\operatorname{Pr}\left(B_{1} \mid G\right)=\frac{\operatorname{Pr}\left(G \mid B_{1}\right) \operatorname{Pr}\left(B_{1}\right)}{\operatorname{Pr}\left(G \mid B_{1}\right) \operatorname{Pr}\left(B_{1}\right)+\operatorname{Pr}\left(G \mid B_{2}\right) \operatorname{Pr}\left(B_{2}\right)+\operatorname{Pr}\left(G \mid B_{3}\right) \operatorname{Pr}\left(B_{3}\right)}=\frac{1 \cdot(1 / 3)}{1 \cdot(1 / 3)+(1 / 2) \cdot(1 / 3)+x \cdot(1 / 3)}=\frac{2}{3+2 x}$
b. $(16 / 30)=\operatorname{Pr}(G)=\operatorname{Pr}\left(G \mid B_{1}\right) \operatorname{Pr}\left(B_{1}\right)+\operatorname{Pr}\left(G \mid B_{2}\right) \operatorname{Pr}\left(B_{2}\right)+\operatorname{Pr}\left(G \mid B_{3}\right) \operatorname{Pr}\left(B_{3}\right)=1$. $(1 / 3)+(1 / 2) \cdot(1 / 3)+x \cdot(1 / 3)=(1 / 2)+(x / 3) \Rightarrow x / 3=(16-15) / 30=1 / 30 \Rightarrow x=0.1$
c. Barber 1 never gives a bad haircut, so if we received one bad haircut (or more) we could not have gotten him, so: $\operatorname{Pr}\left(B_{1} \mid G_{1} \cap G_{2} \cap G_{3} \cap N G_{4} \cap G_{5} \cap G_{6}\right)=0$.
d. $\operatorname{Pr}\left(B_{1} \mid G_{1}\right)=\frac{10}{16}$ (using the result from part a. and $x=0.1$). Similarly: $\operatorname{Pr}\left(B_{2} \mid G_{1}\right)=$ $\frac{\operatorname{Pr}\left(G_{1} \mid B_{2}\right) \operatorname{Pr}\left(B_{2}\right)}{\operatorname{Pr}\left(G_{1} \mid B_{1}\right) \operatorname{Pr}\left(B_{1}\right)+\operatorname{Pr}\left(G_{1} \mid B_{2}\right) \operatorname{Pr}\left(B_{2}\right)+\operatorname{Pr}\left(G_{1} \mid B_{3}\right) \operatorname{Pr}\left(B_{3}\right)}=\frac{(1 / 2) \cdot(1 / 3)}{1 \cdot(1 / 3)+(1 / 2) \cdot(1 / 3)+x \cdot(1 / 3)}=\frac{1}{2 x+3}=\frac{5}{16}$. Since B_{1}, B_{2} and B_{3} are exhaustive and mutually exclusive: $\operatorname{Pr}\left(B_{1} \mid G_{1}\right)+\operatorname{Pr}\left(B_{2} \mid G_{1}\right)+$ $\operatorname{Pr}\left(B_{3} \mid G_{1}\right)=1$ and it follows that: $\operatorname{Pr}\left(B_{3} \mid G_{1}\right)=1-\frac{10}{16}-\frac{5}{16}=\frac{1}{16}$. In other words, having seen G_{1} you update the probability that you will see each of the barbers, so that the probability of meeting barber 1 is $\frac{10}{16}$, in which case you will get a good haircut with probability 1 . Your updated probability of meeting barber 2 is $\frac{5}{16}$, in which case you will get a good haircut with probability $\frac{1}{2}$. Finally, your probability of meeting barber 3 is $\frac{5}{16}$ and if you do you will get a good haircut with probability 0.1 . Therefore: $\operatorname{Pr}\left(G_{2} \mid G_{1}\right)=\frac{10}{16} \cdot 1+\frac{5}{16} \cdot \frac{1}{2}+\frac{1}{16} \cdot \frac{1}{10}=\frac{63}{80}=0.7875$

Question 4:

a. Denote the support of X by $[0, A]$ then the integral over the cdf is: $\frac{1}{2} \cdot \frac{1}{2} \cdot 1+\frac{1}{2} \cdot\left(A-\frac{1}{2}\right) \cdot 1=$

$$
1 \Rightarrow A=2 . \text { So: } f_{X}(x)=\left\{\begin{array}{c}
2 x \text { if } x \in[0,0.5] \\
\frac{4-2 x}{3} \text { if } x \in(0.5,2] \\
0 \text { otherwise }
\end{array}, F_{X}(x)=\left\{\begin{array}{c}
0 \text { if } x<0 \\
x^{2} \text { if } x \in[0,0.5] \\
\frac{4 x-x^{2}-1}{3} \text { if } x \in(0.5,2] \\
1 \text { if } x>2
\end{array}\right.\right.
$$

b. Intuitively, all we have to do is multiply the pdf by 0.8 and add the discrete probability: $f_{Y}(y)=\left\{\begin{array}{c}1.6 y \text { if } y \in[0,0.5] \\ \frac{8(2-y)}{15} \text { if } y \in(0.5,2] \\ 0.2 \text { if } y=10 \\ 0 \text { otherwise }\end{array}\right.$. Now we can easily calculate the cdf: $F_{Y}(y)=$

$$
\left\{\begin{array}{c}
0 \text { if } y<0 \\
0.8 y^{2} \text { if } y \in[0,0.5] \\
\frac{4\left(4 y-y^{2}-1\right)}{15} \text { if } y \in(0.5,2] \\
0.8 \text { if } y \in(2,10) \\
1 \text { if } y>10
\end{array}\right.
$$

