14.30 PROBLEM SET 5-SUGGESTED ANSWERS

Problem 1

The joint pdf of X and Y will be equal to the product of the marginal pdfs, since X and Y are independent.

$$
\begin{aligned}
f_{X, Y}(x, y) & =f_{X}(x) f_{Y}(y) \\
& =\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} y^{2}} \\
& =\frac{1}{2 \pi} e^{-\frac{1}{2}\left(x^{2}+y^{2}\right)}
\end{aligned}
$$

The transformation into polar coordinates is

$$
\begin{aligned}
r^{2} & =X^{2}+Y^{2} \\
\tan \theta & =\frac{Y}{X}
\end{aligned}
$$

with inverse transformations

$$
\begin{aligned}
& X=r \cos \theta \\
& Y=r \sin \theta
\end{aligned}
$$

This yeilds the following matrix of partial derivatives.

$$
\left[\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right]
$$

The determinant of this matrix, the Jacobian, is

$$
\begin{aligned}
J & =\cos \theta(r \cos \theta)-\sin \theta(-r \sin \theta) \\
& =r \cos ^{2} \theta+r \sin ^{2} \theta \\
& =r\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=r
\end{aligned}
$$

The transformations are unique, so we can use the 1-step method without modification.

$$
f_{r \theta}(r, \theta)=r \frac{1}{2 \pi} e^{-\frac{1}{2} r^{2}}
$$

where r lies within $[0, \infty]$ and θ lies within $[0,2 \pi]$. Because the ranges are not dependent and the joint pdf is separable, r and θ are also independent.

Problem 2

a. For a single random variable: $P\left(X_{i} \leq 115\right)=P\left(\frac{X_{i}-\mu}{\sigma} \leq \frac{115-\mu}{\sigma}\right)$.

Notice that $Z_{i}=\frac{X_{i}-\mu}{\sigma}$ is distributed standard normal $\left(Z_{i} \sim N(0,1)\right)$ so:
$P\left(X_{i} \leq 115\right)=P\left(Z_{i} \leq \frac{115-100}{\sqrt{225}}\right)=P\left(Z_{i} \leq 1\right)$. Using the Table you can find that this probability is approximately equal to: 0.8413. By independence: $P\left(X_{1} \leq 115, X_{2} \leq 115, X_{3} \leq 115, X_{4} \leq 115\right)=$
$P\left(X_{1} \leq 115\right) P\left(X_{2} \leq 115\right) P\left(X_{3} \leq 115\right) P\left(X_{4} \leq 115\right)=0.8413^{4}=0.50096$.
b. $\quad \bar{X}_{n}=\sum_{i=1}^{n} \frac{1}{n} X_{i} \sim N\left(\sum_{i=1}^{n} \frac{1}{n} \mu_{i}, \sum_{i=1}^{n}\left(\frac{1}{n}\right)^{2} \sigma_{i}^{2}\right)=N\left(100, \frac{225}{n}\right)=$ $N\left(100,\left(\frac{15}{\sqrt{n}}\right)^{2}\right)$, so: $\bar{X}_{4} \sim N\left(100,\left(\frac{15}{2}\right)^{2}\right)$. Thus: $Z=\frac{\bar{X}_{4}-100}{\left(\frac{15}{2}\right)}$ is a standard normal random variable: $P\left(\bar{X}_{4}<115\right)=P\left(\frac{\bar{X}_{4}-100}{\left(\frac{15}{2}\right)}<\frac{115-100}{\left(\frac{15}{2}\right)}\right)=$ $P(Z<2)=0.9772$.
c. $\quad P\left(\left|\bar{X}_{n}-\mu\right| \leq 5\right)=P\left(\left|\frac{\bar{X}_{n}-\mu}{\left(\frac{15}{\sqrt{n}}\right)}\right| \leq \frac{5}{\left(\frac{15}{\sqrt{n}}\right)}\right)=P\left(\frac{-\sqrt[2]{n}}{3} \leq Z \leq \frac{\sqrt{n}}{3}\right)=$
0.95 . From the table we know that: $P(Z \leq 1.96) \simeq 0.975$ and using the symmetry of the normal distribution this implies that $P(-1.96 \leq Z \leq 1.96) \simeq$ 0.95 , so $\frac{\sqrt{n}}{3}=1.96 \Rightarrow n=(1.96 \cdot 3)^{2}=34.574$. We want the smallest integer and it is $n_{0}=35$.

Problem 3

a. The number of heads (H) in 10 independent flips of a fair coin is distributed Binomial $\left(10, \frac{1}{2}\right) . P(0 \leq H \leq 4)=\sum_{k=0}^{4}\binom{10}{k}(0.5)^{k}(0.5)^{10-k}=$ $\sum_{k=0}^{4}\binom{10}{k}(0.5)^{10}=$

$$
=(0.5)^{10}\left[\binom{10}{0}+\binom{10}{1}+\binom{10}{2}+\binom{10}{3}+\binom{10}{4}\right]=\frac{386}{1024}=0.37695
$$

b. Since H is binomial we can calculate its mean and variance: $E[H]=$ $10 \cdot(0.5)=5, \operatorname{Var}[H]=10 \cdot(0.5)(1-0.5)=2.5$. The approximation relies on the assumption that H is distributed similar to a normal random variable, so: $\frac{H-E[H]}{\sqrt{\operatorname{Var}[H]}}=\frac{H-5}{\sqrt{2.5}} \simeq Z \sim N(0,1)$. Therefore: $P(0 \leq H \leq 4)=$ $P\left(\frac{0-E[H]}{\sqrt{\operatorname{Var}[H]}} \leq \frac{H-E[H]}{\sqrt{\operatorname{Var}[H]}} \leq \frac{4-E[H]}{\sqrt{\operatorname{Var}[H]}}\right) \simeq P\left(\frac{-5}{\sqrt{2.5}} \leq Z \leq \frac{-1}{\sqrt{2.5}}\right) \simeq P(-3.162 \leq Z \leq-0.632)=$ $P(Z \leq 3.162)-P(Z \leq 0.632) \simeq 0.999-0.736=0.263$. Thus the approximation is not very accurate for $n=10$.
c. \quad Now $P(0 \leq H \leq 40)=P\left(\frac{0-E[H]}{\sqrt{\operatorname{Var}[H]}} \leq \frac{H-E[H]}{\sqrt{\operatorname{Var}[H]}} \leq \frac{40-E[H]}{\sqrt{\operatorname{Var}[H]}}\right) \simeq P\left(\frac{-50}{\sqrt{25}} \leq Z \leq \frac{-10}{\sqrt{25}}\right)=$ $P(-10 \leq Z \leq-2)=P(Z \leq 10)-P(Z \leq 2) \simeq 1-0.977=0.023$, which is quite close to the exact probability.
d. Exact calculation: $P(H=6)=\binom{100}{6}\left(\frac{1}{20}\right)^{6}\left(1-\frac{1}{20}\right)^{100-6}=0.15$. Approximation: as $n \rightarrow \infty, p \rightarrow 0,(n p) \rightarrow \lambda$ the binomial distribution converges to the Poisson distribution with parameter λ. Since here $n p=$

5 we can approximate the distribution with a Poisson distribution where $\lambda=5: P(H=40) \simeq \frac{e^{-\lambda} \lambda^{6}}{6!}=\frac{e^{-5} 5^{6}}{6!}=0.146$. Clearly, this is a good approximation.

Problem 4

First of all, to have valid pdfs, we must use $f_{X_{i}}(x)=\frac{1}{\sqrt{2 \pi} \sigma_{i}} e^{-\frac{\left(x-\mu_{i}\right)^{2}}{2 \sigma_{i}^{2}}}$. As always, sorry about the typo (I omitted the negative sign).
a. Because X_{1} and X_{2} are independent, the joint pdf is again the product of the marginal pdfs:

$$
\begin{aligned}
f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right) & =f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right) \\
& =\frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{-\frac{\left(x_{1}-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}} \frac{1}{\sqrt{2 \pi} \sigma_{2}} e^{-\frac{\left(x_{2}-\mu_{2}\right)^{2}}{2 \sigma_{2}^{2}}} \\
& =\frac{1}{2 \pi \sigma_{1} \sigma_{2}} e^{-\frac{1}{2}\left(\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}+\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}\right)}
\end{aligned}
$$

b. We will use Y_{1} for Y. We start with the transformations

$$
\begin{aligned}
& Y_{1}=X_{1}+X_{2} \\
& Y_{2}=X_{1}-X_{2}
\end{aligned}
$$

which will yeild the following inverse transformations:

$$
\begin{aligned}
& X_{1}=\frac{Y_{1}+Y_{2}}{2} \\
& X_{2}=\frac{Y_{1}-Y_{2}}{2}
\end{aligned}
$$

Then the matrix of partial derivatives is

$$
\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right]
$$

So the Jacobian is $\left|\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)-\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\right|=\frac{1}{2}$

The transformation is unique, so we can use the 1-step method without modification.

$$
\begin{aligned}
& f_{Y_{1} Y_{2}}\left(y_{1}, y_{2}\right)=\frac{1}{2 \pi \sigma_{1} \sigma_{2}} e^{-\frac{1}{2}\left(\left(\frac{\frac{y_{1}+y_{2}}{2}-\mu_{1}}{\sigma_{1}}\right)^{2}+\left(\frac{\frac{y_{1}-y_{2}}{2}-\mu_{2}}{\sigma_{2}}\right)^{2}\right)}\left(-\frac{1}{2}\right) \\
& =\frac{1}{4 \pi \sigma_{1} \sigma_{2}} e^{-\frac{1}{2 \sigma_{1}^{2} \sigma_{2}^{2}}\left(\sigma_{2}^{2}\left(\frac{y_{1}+y_{2}}{2}-\mu_{1}\right)^{2}+\sigma_{1}^{2}\left(\frac{y_{1}-y_{2}}{2}-\mu_{2}\right)^{2}\right)} \\
& =\frac{1}{4 \pi \sigma_{1} \sigma_{2}} e^{-\frac{1}{2 \sigma_{1}^{2} \sigma_{2}^{2}}\left(\frac{\sigma_{2}^{2}}{4}\left(y_{1}^{2}+2 y_{1} y_{2}+y_{2}^{2}-4 \mu_{1} y_{1}-4 \mu_{1} y_{2}+4 \mu_{1}^{2}\right)+\frac{\sigma_{1}^{2}}{4}\left(y_{1}^{2}-2 y_{1} y_{2}+y_{2}^{2}-4 \mu_{2} y_{1}+4 \mu_{2} y_{2}+4 \mu_{2}^{2}\right)\right)} \\
& =\frac{1}{4 \pi \sigma_{1} \sigma_{2}} e^{-\frac{\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)\left(\left(y_{1}-\left(\mu_{1}+\mu_{2}\right)\right)^{2}+\left(y_{2}-\left(\mu_{1}-\mu_{2}\right)\right)^{2}\right)}{8 \sigma_{1}^{2} \sigma_{2}^{2}}} \times \\
& e^{-\frac{2 y_{1} y_{2}-2 \mu_{1} y_{2}-2 \mu_{1} y_{1}+2 \mu_{2} y_{1}-2 \mu_{2} y_{2}+2 \mu_{1}^{2}-2 \mu_{2}^{2}}{8 \sigma_{1}^{2}}-\frac{-2 y_{1} y_{2}+2 \mu_{1} y_{2}+2 \mu_{1} y_{1}-2 \mu_{2} y_{1}+2 \mu_{2} y_{2}-2 \mu_{1}^{2}-2 \mu_{2}^{2}}{8 \sigma_{2}^{2}}}
\end{aligned}
$$

To get the pdf of Y, we must integrate over Y_{2}.

$$
\begin{aligned}
f_{Y}\left(y_{1}\right)= & \int_{-\infty}^{\infty} \frac{1}{4 \pi \sigma_{1} \sigma_{2}} e^{-\frac{\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)\left(\left(y_{1}-\left(\mu_{1}+\mu_{2}\right)\right)^{2}+\left(y_{2}-\left(\mu_{1}-\mu_{2}\right)\right)^{2}\right)}{8 \sigma_{1}^{2} \sigma_{2}^{2}}} \times \\
& e^{-\frac{2 y_{1} y_{2}-2 \mu_{1} y_{2}-2 \mu_{1} y_{1}+2 \mu_{2} y_{1}-2 \mu_{2} y_{2}+2 \mu_{1}^{2}-2 \mu_{2}^{2}}{8 \sigma_{1}^{2}}-\frac{-2 y_{1} y_{2}+2 \mu_{1} y_{2}+2 \mu_{1} y_{1}-2 \mu_{2} y_{1}+2 \mu_{2} y_{2}-2 \mu_{1}^{2}-2 \mu_{2}^{2}}{8 \sigma_{2}^{2}}} d y_{2} \\
= & \frac{1}{4 \pi \sigma_{1} \sigma_{2}} e^{-\frac{\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)\left(y_{1}-\left(\mu_{1}+\mu_{2}\right)\right)^{2}}{8 \sigma_{1}^{2} \sigma_{2}^{2}}} \int_{-\infty}^{\infty} e^{-\frac{\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)\left(y_{2}-\left(\mu_{1}-\mu_{2}\right)\right)^{2}}{8 \sigma_{1}^{2} \sigma_{2}^{2}}} \times \\
& e^{-\frac{2 y_{1} y_{2}-2 \mu_{1} y_{2}-2 \mu_{1} y_{1}+2 \mu_{2} y_{1}-2 \mu_{2} y_{2}+2 \mu_{1}^{2}-2 \mu_{2}^{2}}{8 \sigma_{1}^{2}}-\frac{-2 y_{1} y_{2}+2 \mu_{1} y_{2}+2 \mu_{1} y_{1}-2 \mu_{2} y_{1}+2 \mu_{2} y_{2}-2 \mu_{1}^{2}-2 \mu_{2}^{2}}{8 \sigma_{2}^{2}}} d y_{2}
\end{aligned}
$$

which has no closed form, in general. By other methods, it can be proved that $Y^{\sim} N\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$. We can show this here if we let $\sigma_{1}=\sigma_{2}=\sigma$.

$$
\begin{aligned}
f_{Y}\left(y_{1}\right)= & \frac{1}{4 \pi \sigma^{2}} e^{-\frac{\left(2 \sigma^{2}\right)\left(y_{1}-\left(\mu_{1}+\mu_{2}\right)\right)^{2}}{8 \sigma^{4}}} \int_{-\infty}^{\infty} e^{-\frac{\left(2 \sigma^{2}\right)\left(y_{2}-\left(\mu_{1}-\mu_{2}\right)\right)^{2}}{8 \sigma^{4}}} \times \\
& e^{-\frac{2 y_{1} y_{2}-2 \mu_{1} y_{2}-2 \mu_{1} y_{1}+2 \mu_{2} y_{1}-2 \mu_{2} y_{2}+2 \mu_{1}^{2}-2 \mu_{2}^{2}}{8 \sigma^{2}}-\frac{-2 y_{1} y_{2}+2 \mu_{1} y_{2}+2 \mu_{1} y_{1}-2 \mu_{2} y_{1}+2 \mu_{2} y_{2}-2 \mu_{1}^{2}-2 \mu_{2}^{2}}{8 \sigma^{2}}} d y_{2} \\
= & \frac{1}{\sqrt{\pi} 2 \sigma} e^{-\frac{\left(y_{1}-\left(\mu_{1}+\mu_{2}\right)\right)^{2}}{4 \sigma^{2}}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{\pi} 2 \sigma} e^{-\frac{\left(2 \sigma^{2}\right)\left(y_{2}-\left(\mu_{1}-\mu_{2}\right)\right)^{2}}{8 \sigma^{4}}} d y_{2} \\
= & \frac{1}{\sqrt{\pi} 2 \sigma} e^{-\frac{\left(y_{1}-\left(\mu_{1}+\mu_{2}\right)\right)^{2}}{4 \sigma^{2}}}
\end{aligned}
$$

because $\int_{-\infty}^{\infty} \frac{1}{\sqrt{\pi} 2 \sigma} e^{-\frac{\left(2 \sigma^{2}\right)\left(y_{2}-\left(\mu_{1}-\mu_{2}\right)\right)^{2}}{8 \sigma^{4}}} d y_{2}$ is a standard normal, and must integrate to 1.
c. $\quad E(Y)=E\left(X_{1}+X_{2}\right)=\mu_{1}+\mu_{2}$, since X_{1} and X_{2} are independent, normally distributed randome variables. Similarly, $V(Y)=V\left(X_{1}+X_{2}\right)=$ $\sigma_{1}^{2}+\sigma_{2}^{2}$ (since X_{1} and X_{2} are independent, their covariance is zero).

Problem 5
a. $\quad X$ is distributed χ^{2} with p degrees of freedom, so its pdf is

$$
f(x)=\frac{1}{\Gamma\left(\frac{p}{2}\right) 2^{\frac{p}{2}}} x^{\frac{p}{2}-1} e^{-\frac{x}{2}}
$$

A gamma distribution for a random variable Y is of the form

$$
f(y)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}} y^{\alpha-1} e^{-\frac{y}{\beta}}
$$

You can see that if we let $\alpha=\frac{p}{2}$ and $\beta=2, X$ has a gamma distribution.
b. We learned in class that the square of a standard normal random variable has a χ^{2} distribution with one degree of freedom. Thus $\left(\frac{y-\mu}{\sigma}\right)^{2} \sim \chi_{(1)}^{2}$. In addition, we learned that the sum of two independent χ^{2} variables will also have a χ^{2} distribution, with degrees of freedom equal to the sum of the degrees of freedom of initial random variables. Because Y and X are independent, Y^{2} and X will also be independent, and we can apply this property to conclude that $\left(\frac{y-\mu}{\sigma}\right)^{2}+X^{\sim} \chi_{(p+1)}^{2}$.
c. If $p=4$, we use the fourth row of the table given in class, and look for the column corresponding to $\alpha=0.05$. We can see that $A=9.488$.

