
14.30 Statistics - Fall 2003
Exam #2 Solutions

Prepared by Eric Moos

1. True, False, or Uncertain:

(a) False - The event most likely to occur is called the mode. The mean is what we expect to happen
"in expectation." In fact, the mean need not be a possible outcome. For example, consider the
Bernoulli distribution (e.g., �ipping a coin) with probability of success 12 . There are two possible
outcomes, X = 0 and X = 1; but the expected value of X is 1

2 .

(b) True - Given the transformation Z = z (X), we can compute the expectation of the random
variable Z in either of two ways, using z (X) and the distribution of X or using Z and the
distribution of Z.

1Z
�1

z (x) fX (x) dx = E [z (X)] = E [Z] =

1Z
�1

zfZ (z) dz

(c) False - Although the correlation and the covariance are related, they are not the same thing.
The correlation is a rescaling of the covariance which always lies between �1 and 1. The exact
relationship between the correlation and the covariance is the following:

� (X;Y ) =
Cov (X;Y )

�X�Y

(d) Uncertain - Although this seems like a Poisson process, in which case the answer would have been
true, this may not necessarily be a Poisson process. For it to be a Poisson process, the example
must satisfy the following assumptions:

i. The number of arrivals in every �xed interval of time of length �t has a Poisson process in
which the mean is �t; and

ii. The number of arrivals in every two disjoint time intervals are independent.

(e) Uncertain - If X has the standard normal distribution, then, by de�nition, it has mean 0 and
variance 1. The statement is only true if �2 = 1.

(f) False - The Chi-Squared distribution has f (x) = 0 for x < 0 for all k. There are no degrees of
freedom for which the pdf is non-zero on the non-positive part of the real line.

2. Expectations of random variables:

(a)

E [aX + b] �
1Z
�1

(ax+ b) fX (x) dx =

1Z
�1

axfX (x) dx+

1Z
�1

bfX (x) dx

= a

1Z
�1

xfX (x) dx+ b

1Z
�1

fX (x) dx = aE [X] + b

(b) Because X and Y are independent, the joint distribution is the product of the marginal distribu-
tions.

fXY (x; y) = fX (x) fY (y)
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Therefore,

E [g (X)h (X)] �
1Z
�1

1Z
�1

g (x)h (y) fXY (x; y) dxdy

=

1Z
�1

1Z
�1

g (x)h (y) fX (x) fY (y) dxdy

=

1Z
�1

h (y) fY (y)

24 1Z
�1

g (x) fX (x) dx

35 dy
=

1Z
�1

g (x) fX (x) dx

1Z
�1

h (y) fY (y) dy

= E [g (X)]E [h (Y )]

(c) Although this fact is easiest to show using the Law of Iterated Expectations, the question speci�-
cally asks you to use the formal de�nition of expectation. In order to prove this, we shall merely
use Bayes Rule (relating joint distributions to marginal and conditional distributions) and the
de�nition of the expectation.

E [ZY ] =

1Z
�1

1Z
�1

zyfZY (z; y) dydz =

1Z
�1

1Z
�1

zyfY jZ (yjz) fZ (z) dydz

=

1Z
�1

zfZ (z)

24 1Z
�1

yfY jZ (yjz) dy

35 dz = 1Z
�1

zfZ (z)E [Y jz] dz

= E [ZE [Y jZ]]

(d) Using the de�nition of covariance, the Law of Iterated Expectations, and the result from part c,

Cov [Z;E (Y jZ)] = E [ZE (Y jZ)]� E [Z]E [E (Y jZ)]
= E [ZY ]� E [Z]E [Y ]
= Cov [Z; Y ]

3. Moments:

(a) Using the de�nition of the expectation, the mean is

E (X) =

2Z
0

x
3

8
x2dx =

3

8

2Z
0

x3dx

=
3

8

�
1

4

�
x4
����2
0

=
3

32
(16� 0)

=
3

2

In order to calculate the standard deviation, it is easiest to calculate the variance �rst. To do
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this, we need the expected value of X2:

E
�
X2
�
=

2Z
0

x2
3

8
x2dx =

3

8

2Z
0

x4dx

=
3

8

�
1

5

�
x5
����2
0

=
3

40
(32� 0)

=
12

5

V ar (X) = E
�
X2
�
� E (X)2

=
12

5
� 9
4
=
48� 45
20

=
3

20

The standard deviation is the square root of the variance.

SD (X) =
p
V ar (X) =

r
3

20

We can expand the variance of a linear function of X in terms of the variance of X.

V ar (3X + 2) = 9V ar (X)

= 9 � 3
20
=
27

20

(b) The expectation of Y can be found by multiplying the marginal distribution of X and the con-
ditional distribution of Y to get the joint distribution of X and Y , integrating out X to get the
marginal distribution of Y , and taking the expectation of Y . But there is no need to go through
all of that since the Law of Iterated Expectations simpli�es things considerably. Using what we
know about the uniform distribution, (i.e., Z � U [a; b]) E [Z] = b+a

2 ).

E (Y ) = E [E (Y jX)] = E
�
X � 1
2

�
=

1

2
E [X]� 1

2
=
1

2

�
3

2

�
� 1
2

=
3

4
� 1
2
=
1

4

4. Transformation of uniform random variables: Begin by graphing the transformation in order to get a
sense of its monotonicity.

(a) X � U [�0:5; 0:5] Notice that on the interval [�0:5; 0:5], Y = 2�3X, the transformation is strictly
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decreasing, and Y 2
�
1
2 ;

7
2

�
. Therefore, using the 2-Step method,

FY (y) � P (Y � y) = P (2� 3X � y)

= P

�
X � 1

3
(2� y)

�
= 1� P

�
X � 1

3
(2� y)

�
= 1� 1

3
(2� y)� 1

2
=
y

3
� 1
6

fY (y) =
1

3

The pdf is obtained by di¤erentiating the cdf. A linear transformation (as this actually turns out
to be) of a uniform random variable is also uniform.

(b) X � U [0; 1] Notice that on the interval [0; 1], the transformation is not monotonic. Therefore, in
order to use the 1-Step method, we must partition X so that the transformation is monotonic on
each interval. On the interval

�
0; 23

�
Y = 2 � 3X, the transformation is strictly decreasing, and

Y 2 (0; 2].

y = 2� 3x

x =
1

3
(2� y)����dxdy

���� =

�����13
���� = 1

3

Therefore, for this partition,

fY (y) = fX

�
1

3
(2� y)

�
1

3
=
1

3
(1) =

1

3

On the interval
�
2
3 ; 1
�
Y = 3X � 2, the transformation is strictly increasing, and Y 2 (0; 1].

y = 3x� 2

x =
1

3
(y � 2)����dxdy

���� =

����13
���� = 1

3

Therefore, for this partition,

fY (y) = fX

�
1

3
(y � 2)

�
1

3
=
1

3
(1) =

1

3

Our �nal answer is the aggregate of these two interval results.

fY (y) =

8<:
2
3
1
3
0

y 2 (0; 1]
y 2 (1; 2]
otherwise

The pdf at y = 0 is unimportant because P (Y = 0) = 0.

(c) There is actually alot going on in this comment/question. First, a Jacobian is not always necessary.
A transformation of a discrete random variable does not require a Jacobian; Jacobians are speci�c
to continuous transformations. Also, if you are transforming continuous random variables using
the 2-Step method, you do not need to explicitly calculate a Jacobian, although the Jacobian
will end up being taken into consideration implicitly. Last, although you may think that the 1-
Step method applied to the transformation of one random variable into another does not require
a Jacobian, it does in fact use a Jacobian. Suppose you have the following transformation:

Y = r (X). The term
���dr�1(y)dy

��� in the 1-Step method is a Jacobian, it just happens to be the
Jacobian determinant of a 1� 1 (i.e., scalar) matrix.
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5. Paternity testing (AKA Life in the NBA): Let X denote the random length in days of pregnancy,
X � N

�
260; 144a

�
. Also, let Z denote a standard normal random variable (Z � N (0; 1)).

(a) a = 4) X � N (260; 36)

P (X � 270) = P

�
X � 260

6
� 270� 260

6

�
= P

�
Z � 5

3

�
= P (Z � 1:67)

� 0:9525

(b) a = 4) X � N (260; 36)

P (254 < X < 270) = P

�
254� 260

6
<
X � 260

6
<
270� 260

6

�
= P

�
�1 < Z < 5

3

�
= P

�
Z <

5

3

�
� P (Z � �1)

= P

�
Z <

5

3

�
� P (Z > 1)

= P

�
Z <

5

3

�
+ P (Z � 1)� 1

� 0:9525 + 0:8413� 1
= 0:7938

(c) a = 4) X � N (260; 36)
W =

X

6
� 43:33 = X � 260

6

Hence, W � N (0; 1), a standard normal random variable.

90% = P (�w �W � w)
= P (W � w)� P (W � �w)
= P (W � w)� P (W � w)
= P (W � w) + P (W � w)� 1

1:90 = 2P (W � w)
P (W � w) = 0:95

w � 1:65

(Note that 1.645 is a better estimate, but we shall only use two decimal places.)

(d) The probability that impregnation occurred during the time the "potential" father was away is

P (245 � X � 275)

According to the judge�s decision rule, the "potential" father will not be declared the father if

P (245 � X � 275) � 0:90

Hence, the "potential" father will be declared the father if

0:90 � P (245 � X � 275)

= P

�p
a
245� 260

12
�
p
a
X � 260
12

�
p
a
275� 260

12

�
= P

�
�
p
a
5

4
� Z �

p
a
5

4

�
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This statement looks almost exactly like what we considered in part c.

p
a
5

4
� 1:65

p
a � 1:32

a � 1:74

For relatively small values of a, the variance is large (the larger a is, the smaller the variance).
A large variance means that we (and, consequently, the judge) are less sure that the baby was
conceived while "potential" father was away. If a is large, then the variance is small and the
distribution on X is less disperse; there is much more likelihood that the "potential" father was
away when the baby was conceived.
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