### 14.30 PROBLEM SET 8 SUGGESTED ANSWERS

## Problem 1

Suppose that the sample statistics for a random sample of 10 observations from a $N\left(\mu, \sigma^{2}\right)$ population are the following:

$$
\begin{aligned}
\bar{X} & =5 \\
S^{2} & =4
\end{aligned}
$$

a. We know that

$$
\sqrt{n} \frac{\bar{X}-\mu}{S} \sim t_{9}
$$

Since $n$ is not very large, we cannot assume normality, but must work with the $t$ distribution. We need to find the number $t_{0.025,9}$ such that

$$
\operatorname{Pr}\left(-t_{0.025,9} \leq \sqrt{n} \frac{\bar{X}-\mu}{S} \leq t_{0.025,9}\right)=0.95
$$

From our tables we find that $t_{0.025,9}=2.262$. Then,

$$
\begin{aligned}
\operatorname{Pr}\left(-2.262 \leq \sqrt{n} \frac{\bar{X}-\mu}{S} \leq 2.262\right) & =0.95 \\
\operatorname{Pr}\left(\bar{X}-2.262 \frac{S}{\sqrt{n}} \leq \mu \leq \bar{X}+2.262 \frac{S}{\sqrt{n}}\right) & =0.95
\end{aligned}
$$

Our random interval is thus $\left[\bar{X}-2.262 \frac{S}{\sqrt{n}}, \bar{X}+2.262 \frac{S}{\sqrt{n}}\right]$, which for this sample is equal to $\left[5-2.262 \frac{2}{\sqrt{10}}, 5+2.262 \frac{2}{\sqrt{10}}\right]$ or $[3.57,6.43]$.
b. In general, our confidence level takes the form $\left[\bar{X}-t_{\alpha / 2,9} \frac{S}{\sqrt{n}}, \bar{X}+t_{\alpha / 2,9} \frac{S}{\sqrt{n}}\right]$, which is merely a generalization from part a. The length of the interval is

$$
\begin{aligned}
& \left(\bar{X}+t_{\alpha / 2,9} \frac{S}{\sqrt{n}}\right)-\left(\bar{X}-t_{\alpha / 2,9} \frac{S}{\sqrt{n}}\right) \\
= & 2 t_{\alpha / 2,9} \frac{S}{\sqrt{n}}
\end{aligned}
$$

Given the length, $S$, and $n$, we can solve for $t_{\alpha / 2,9}$ :

$$
\begin{aligned}
3.57 & =2 t_{\alpha / 2,9} \frac{2}{\sqrt{10}} \\
\frac{3.57 \sqrt{10}}{4} & =t_{\alpha / 2,9} \\
2.82 & =t_{\alpha / 2,9}
\end{aligned}
$$

Then from the table, we can see that we must choose $\alpha=0.02$, so we have a $98 \%$ confidence level.

## Problem 2

a.

$$
\sqrt{n} \frac{\bar{X}-\mu}{S} \sim t_{n-1}
$$

We can see that this is the case because

$$
\sqrt{n} \frac{\bar{X}-\mu}{S}=\frac{\sqrt{n}(\bar{X}-\mu) / \sigma}{\sqrt{(n-1) S^{2} / \sigma^{2}(n-1)}}=\frac{Z}{\sqrt{\chi_{n-1}^{2} /(n-1)}}
$$

which has a $t$ distribution with $n-1$ degrees of freedom.
b.

$$
n \frac{(\bar{X}-\mu)^{2}}{S^{2}} \sim F_{(1, n-1)}
$$

We can derive this by

$$
n \frac{(\bar{X}-\mu)^{2}}{S^{2}}=\frac{n(\bar{X}-\mu)^{2} / \sigma^{2}(1)}{(n-1) S^{2} / \sigma^{2}(n-1)}=\frac{\chi_{1}^{2} / 1}{\chi_{n-1}^{2} /(n-1)}
$$

which has an $F$ distribution with 1 and $n-1$ degrees of freedom.
c. The square of a statistic that has a $t$ distribution with $k$ degrees of freedom will have an $F$ distribution with 1 and $k$ degrees of freedom.

## Problem 3

Since $\sigma^{2}$ is known, we can use the normal distribution rather than the $t$ distribution.
a. To construct the confidence interval, we need to find a number $z_{0.025}$ such that

$$
\operatorname{Pr}\left(-z_{0.025} \leq \sqrt{n} \frac{\bar{X}-\mu}{\sigma} \leq z_{0.025}\right)=0.95
$$

From our normal distribution table, we find that $z_{0.025}=1.96$. Then, we have

$$
\begin{aligned}
\operatorname{Pr}\left(-1.96 \leq \sqrt{n} \frac{\bar{X}-\mu}{\sigma} \leq 1.96\right) & =0.95 \\
\operatorname{Pr}\left(\bar{X}-1.96 \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{X}+1.96 \frac{\sigma}{\sqrt{n}}\right) & =0.95
\end{aligned}
$$

Thus our confidence interval is $\left[\bar{X}-1.96 \frac{\sigma}{\sqrt{n}}, \bar{X}+1.96 \frac{\sigma}{\sqrt{n}}\right]$, which has a length of $2 \times 1.96 \frac{\sigma}{\sqrt{n}}$. We want to find $n$ such that this lenght is equal to $0.01 \sigma$, so we set the values equal, cancel the $\sigma$ on both sides, and solve for $n$ :

$$
\begin{aligned}
2 \times 1.96 \frac{\sigma}{\sqrt{n}} & =0.01 \sigma \\
\sqrt{n} & =\frac{3.92}{0.01}=392 \\
n & =153664
\end{aligned}
$$

Thus we will need quite a large sample!
b. The general formula for the length of the confidence interval is $z_{\alpha / 2} \frac{2 \sigma}{\sqrt{n}}$. Given the length, $n$, and $\sigma$, we can solve for $z_{\alpha / 2}$, which will determine the confidence level.

$$
\begin{aligned}
z_{\alpha / 2} \frac{2 \sigma}{\sqrt{n}} & =0.01 \sigma \\
z_{\alpha / 2} & =\frac{0.01}{2} \sqrt{153664 / 2} \\
& =1.39
\end{aligned}
$$

We then turn to our table to see that this value corresponds to $\alpha / 2=$ 0.0823 , or a confidence level of $83.5 \%$.
c. Again our confidence interval will be $\left[\bar{X}-1.96 \frac{\sigma}{\sqrt{n}}, \bar{X}+1.96 \frac{\sigma}{\sqrt{n}}\right]$, and using $\sigma^{2}=2$, we can substitute in to get $[\bar{X}-0.01, \bar{X}+0.01]$, so the length is 0.02 .

## Problem 4

a. Notice that the landlord is constructing a confidence interval for $X_{i}$, not $\bar{X}$. To arrive at $600 \pm 200$, she first assumes that the $X_{i}$ are iid normally distributed, with mean 600 and variance $100^{2}$, and that this variance is known. She then approximates the true confidence interval of $600 \pm 1.96 \sigma$ by $600 \pm 2$ (100). Because the confidence interval is for $X_{i}$, not $\bar{X}$, we cannot appeal to a CLT (and her sample size would be too small in any case), so if the $X_{i}$ are not normally distributed, the confidence interval is wrong. In addition, because she is actually using an estimate of the variance, she ought to be using a $t$ distribution with 8 degrees of freedom instead of a $z$, which would produce a confidence interval of $600 \pm 2.306$ (100). Because
the landlord is constructing a confidence interval interval of $X_{i}$, not $\bar{X}$, the size of the confidence interval will not decrease as $n$ increases.
b. Here we will construct a $95 \%$ confidence interval for the population mean based on the assumptions that the $X_{i}$ are normally distributed and the variance is known to be $100^{2}$.

$$
\begin{aligned}
\operatorname{Pr}\left(-z_{0.025} \leq \sqrt{n} \frac{\bar{X}-\mu}{\sigma} \leq z_{0.025}\right) & =0.95 \\
\operatorname{Pr}\left(\bar{X}-z_{0.025} \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{X}+z_{0.025} \frac{\sigma}{\sqrt{n}}\right) & =0.95 \\
\operatorname{Pr}\left(600-(1.96) \frac{100}{\sqrt{9}} \leq \mu \leq 600+(1.96) \frac{100}{\sqrt{9}}\right) & =0.95 \\
\operatorname{Pr}(534.67 \leq \mu \leq 665.33) & =0.95
\end{aligned}
$$

The width of the confidence interval is $2(1.96) \frac{\sigma}{\sqrt{n}}=\frac{392}{\sqrt{n}}$. Thus if we want the length of the confidence interval to be less than 100, we manipulate $\frac{392}{\sqrt{n}}<100$ to get $n>(3.92)^{2}$, which implies $n \geq 16$.

## Problem 5

A confidence interval of 0.01 is very small, as we have seen before, so we will probably need a very large sample. When $n$ is large, the sample mean, which in this case will be the number of successes divided by the total number of observations (i.e. the percentage of the sample that is a success), will be approximately normally distributed, by the central limit theorem:

$$
\frac{\bar{X}-p}{\sqrt{\frac{p(1-p)}{n}}} \sim N(0,1)
$$

(Recall that the variance of a Bernouli random variable is $p(1-p)$ ). We have seen that the length of a $95 \%$ confidence interval will in general have the form $2(1.96) \frac{\sigma}{\sqrt{n}}=2(1.96) \sqrt{\frac{p(1-p)}{n}}$. The difficulty in this case is that this expression depends on $p$. However, you can easily show that $p(1-p)$ is maximized at $p=0.5$, so the length will be at most $2(1.96) \sqrt{\frac{1}{4 n}}=\frac{1.96}{\sqrt{n}}$. Thus to guarantee that our confidence interval will be no more than 0.01 in width, we set $0.01 \geq \frac{1.96}{\sqrt{n}}$, and find that we must have $n \geq(196)^{2}=38416$. This number is sufficiently large to justify the use of the CLT.

