14.30 PROBLEM SET 8 SUGGESTED ANSWERS

Problem 1

Suppose that the sample statistics for a random sample of 10 observations from a $N\left(\mu,\sigma^2\right)$ population are the following:

$$\overline{X} = 5$$
 $S^2 = 4$

a. We know that

$$\sqrt{n}\frac{\overline{X} - \mu}{S} \sim t_9$$

Since n is not very large, we cannot assume normality, but must work with the t distribution. We need to find the number $t_{0.025,9}$ such that

$$\Pr\left(-t_{0.025,9} \le \sqrt{n} \frac{\overline{X} - \mu}{S} \le t_{0.025,9}\right) = 0.95$$

From our tables we find that $t_{0.025,9} = 2.262$. Then,

$$\Pr\left(-2.262 \le \sqrt{n} \frac{\overline{X} - \mu}{S} \le 2.262\right) = 0.95$$

$$\Pr\left(\overline{X} - 2.262 \frac{S}{\sqrt{n}} \le \mu \le \overline{X} + 2.262 \frac{S}{\sqrt{n}}\right) = 0.95$$

Our random interval is thus $\left[\overline{X} - 2.262 \frac{S}{\sqrt{n}}, \overline{X} + 2.262 \frac{S}{\sqrt{n}}\right]$, which for this sample is equal to $\left[5 - 2.262 \frac{2}{\sqrt{10}}, 5 + 2.262 \frac{2}{\sqrt{10}}\right]$ or [3.57, 6.43].

b. In general, our confidence level takes the form $\left[\overline{X} - t_{\alpha/2,9} \frac{S}{\sqrt{n}}, \overline{X} + t_{\alpha/2,9} \frac{S}{\sqrt{n}}\right]$, which is merely a generalization from part a. The length of the interval is

$$\left(\overline{X} + t_{\alpha/2,9} \frac{S}{\sqrt{n}}\right) - \left(\overline{X} - t_{\alpha/2,9} \frac{S}{\sqrt{n}}\right)$$

$$= 2t_{\alpha/2,9} \frac{S}{\sqrt{n}}$$

Given the length, S, and n, we can solve for $t_{\alpha/2.9}$:

$$3.57 = 2t_{\alpha/2,9} \frac{2}{\sqrt{10}}$$

$$\frac{3.57\sqrt{10}}{4} = t_{\alpha/2,9}$$

$$2.82 = t_{\alpha/2,9}$$

Then from the table, we can see that we must choose $\alpha = 0.02$, so we have a 98% confidence level.

Problem 2

a.

$$\sqrt{n}\frac{\overline{X} - \mu}{S} \sim t_{n-1}$$

We can see that this is the case because

$$\sqrt{n}\frac{\overline{X}-\mu}{S} = \frac{\sqrt{n}\left(\overline{X}-\mu\right)/\sigma}{\sqrt{\left(n-1\right)S^2/\sigma^2\left(n-1\right)}} = \frac{Z}{\sqrt{\chi_{n-1}^2/\left(n-1\right)}}$$

which has a t distribution with n-1 degrees of freedom.

b.

$$n\frac{\left(\overline{X} - \mu\right)^2}{S^2} \sim F_{(1, n-1)}$$

We can derive this by

$$n\frac{\left(\overline{X} - \mu\right)^{2}}{S^{2}} = \frac{n\left(\overline{X} - \mu\right)^{2} / \sigma^{2}\left(1\right)}{(n-1)S^{2} / \sigma^{2}\left(n-1\right)} = \frac{\chi_{1}^{2} / 1}{\chi_{n-1}^{2} / (n-1)}$$

which has an F distribution with 1 and n-1 degrees of freedom.

c. The square of a statistic that has a t distribution with k degrees of freedom will have an F distribution with 1 and k degrees of freedom.

Problem 3

Since σ^2 is known, we can use the normal distribution rather than the t distribution.

a. To construct the confidence interval, we need to find a number $z_{0.025}$ such that

$$\Pr\left(-z_{0.025} \le \sqrt{n} \frac{\overline{X} - \mu}{\sigma} \le z_{0.025}\right) = 0.95$$

From our normal distribution table, we find that $z_{0.025} = 1.96$. Then, we have

$$\Pr\left(-1.96 \le \sqrt{n} \frac{\overline{X} - \mu}{\sigma} \le 1.96\right) = 0.95$$

$$\Pr\left(\overline{X} - 1.96 \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X} + 1.96 \frac{\sigma}{\sqrt{n}}\right) = 0.95$$

Thus our confidence interval is $\left[\overline{X} - 1.96 \frac{\sigma}{\sqrt{n}}, \overline{X} + 1.96 \frac{\sigma}{\sqrt{n}}\right]$, which has a length of $2 \times 1.96 \frac{\sigma}{\sqrt{n}}$. We want to find n such that this length is equal to 0.01σ , so we set the values equal, cancel the σ on both sides, and solve for n:

$$2 \times 1.96 \frac{\sigma}{\sqrt{n}} = 0.01\sigma$$

$$\sqrt{n} = \frac{3.92}{0.01} = 392$$

$$n = 153664$$

Thus we will need quite a large sample!

b. The general formula for the length of the confidence interval is $z_{\alpha/2} \frac{2\sigma}{\sqrt{n}}$. Given the length, n, and σ , we can solve for $z_{\alpha/2}$, which will determine the confidence level.

$$z_{\alpha/2} \frac{2\sigma}{\sqrt{n}} = 0.01\sigma$$
 $z_{\alpha/2} = \frac{0.01}{2} \sqrt{153664/2}$
 $= 1.39$

We then turn to our table to see that this value corresponds to $\alpha/2 = 0.0823$, or a confidence level of 83.5%.

c. Again our confidence interval will be $\left[\overline{X} - 1.96 \frac{\sigma}{\sqrt{n}}, \overline{X} + 1.96 \frac{\sigma}{\sqrt{n}}\right]$, and using $\sigma^2 = 2$, we can substitute in to get $\left[\overline{X} - 0.01, \overline{X} + 0.01\right]$, so the length is 0.02.

Problem 4

a. Notice that the landlord is constructing a confidence interval for X_i , not \overline{X} . To arrive at 600 ± 200 , she first assumes that the X_i are iid normally distributed, with mean 600 and variance 100^2 , and that this variance is known. She then approximates the true confidence interval of $600 \pm 1.96\sigma$ by 600 ± 2 (100). Because the confidence interval is for X_i , not \overline{X} , we cannot appeal to a CLT (and her sample size would be too small in any case), so if the X_i are not normally distributed, the confidence interval is wrong. In addition, because she is actually using an estimate of the variance, she ought to be using a t distribution with 8 degrees of freedom instead of a t, which would produce a confidence interval of t000 and variance interval of t1000. Because

the landlord is constructing a confidence interval interval of X_i , not \overline{X} , the size of the confidence interval will not decrease as n increases.

.

b. Here we will construct a 95% confidence interval for the population mean based on the assumptions that the X_i are normally distributed and the variance is known to be 100^2 .

$$\Pr\left(-z_{0.025} \le \sqrt{n} \frac{\overline{X} - \mu}{\sigma} \le z_{0.025}\right) = 0.95$$

$$\Pr\left(\overline{X} - z_{0.025} \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X} + z_{0.025} \frac{\sigma}{\sqrt{n}}\right) = 0.95$$

$$\Pr\left(600 - (1.96) \frac{100}{\sqrt{9}} \le \mu \le 600 + (1.96) \frac{100}{\sqrt{9}}\right) = 0.95$$

$$\Pr\left(534.67 \le \mu \le 665.33\right) = 0.95$$

The width of the confidence interval is $2(1.96)\frac{\sigma}{\sqrt{n}} = \frac{392}{\sqrt{n}}$. Thus if we want the length of the confidence interval to be less than 100, we manipulate $\frac{392}{\sqrt{n}} < 100$ to get $n > (3.92)^2$, which implies $n \ge 16$.

Problem 5

A confidence interval of 0.01 is very small, as we have seen before, so we will probably need a very large sample. When n is large, the sample mean, which in this case will be the number of successes divided by the total number of observations (i.e. the percentage of the sample that is a success), will be approximately normally distributed, by the central limit theorem:

$$\frac{\overline{X} - p}{\sqrt{\frac{p(1-p)}{n}}} \sim N(0,1)$$

(Recall that the variance of a Bernouli random variable is p(1-p)). We have seen that the length of a 95% confidence interval will in general have the form $2(1.96)\frac{\sigma}{\sqrt{n}}=2(1.96)\sqrt{\frac{p(1-p)}{n}}$. The difficulty in this case is that this expression depends on p. However, you can easily show that p(1-p) is maximized at p=0.5, so the length will be at most $2(1.96)\sqrt{\frac{1}{4n}}=\frac{1.96}{\sqrt{n}}$. Thus to guarantee that our confidence interval will be no more than 0.01 in width, we set $0.01 \geq \frac{1.96}{\sqrt{n}}$, and find that we must have $n \geq (196)^2 = 38416$. This number is sufficiently large to justify the use of the CLT.