Lecture Note 9 *
 Interval Estimation and Confidence Intervals

MIT 14.30 Spring 2006
Herman Bennett

22 Interval Estimation

Interval estimation is another approach for estimating a parameter θ. Interval estimation consists in finding a random interval that contains the true parameter θ with probability $(1-\alpha)$. Such an interval is called confidence interval and the probability $(1-\alpha)$ is called the confidence level.

$$
\begin{equation*}
P\left(A\left(X_{1}, \ldots, X_{n}\right) \leq \theta \leq B\left(X_{1}, \ldots X_{n}\right)\right)=1-\alpha \tag{71}
\end{equation*}
$$

Example 22.1. Assume a random sample from a $N\left(\mu, \sigma^{2}\right)$ population, where both parameters are unknown. Find the 90% (symmetric) confidence interval of σ^{2}.

[^0]Example 22.2. Assume a random sample from a $N\left(\mu, \sigma^{2}\right)$ population, where the parameter μ is unknown and $\sigma=2$. Find the 95% (symmetric) confidence interval of μ. How would your answer change if σ is unknown?

- The random interval $\left(\bar{X}-\frac{1.96 \sigma}{\sqrt{n}}, \bar{X}+\frac{1.96 \sigma}{\sqrt{n}}\right)$ contains the true parameter θ with 95% probability. It is wrong to say that θ lies in the interval with 95% probability... θ is not a RV!

23 Useful results

$23.1 \quad t$-student distribution

A RV X is said to have a t-student distribution with parameter $v>0$ (degrees of freedom) if the pdf of X is:

$$
\begin{equation*}
X \sim t_{(v)}: \quad f(x \mid v)=\frac{\Gamma\left(\frac{v+1}{2}\right)}{\Gamma\left(\frac{v}{2}\right)} \frac{1}{\sqrt{v \pi}} \frac{1}{\left(1+\left(\frac{x^{2}}{v}\right)\right)^{(v / 2+0.5)}} \tag{72}
\end{equation*}
$$

for $-\infty<x<\infty$ and v positive integer.

Let $X \sim N(0,1)$ and $Z \sim \chi_{n}^{2}$ be independent RVs. Then, the RV H is distritbuted t-student with n degrees of freedom.

$$
\begin{equation*}
H=\frac{X}{\sqrt{Z / n}} \sim t_{(n)} \tag{73}
\end{equation*}
$$

- Symmetric distribution around 0 , which implies that $t_{\alpha / 2, n}=-t_{1-\alpha / 2, n}$.
- As $n \rightarrow \infty, t(n) \rightarrow N(0,1)$.
(See attached graph and table).

Example 23.1. Important result. Assume a normally distributed random sample. Then, $\frac{\sqrt{n}(\bar{X}-\mu)}{S} \sim t_{(n-1)}$. Prove this result.

23.2 F distribution

 X is:

$$
\begin{equation*}
X \sim F_{\left(v_{1}, v_{2}\right)}: \quad f\left(x \mid v_{1}, v_{2}\right)=\frac{\Gamma\left(\frac{v_{1}+v_{2}}{2}\right)}{\Gamma\left(\frac{v_{1}}{2}\right) \Gamma\left(\frac{v_{2}}{2}\right)}\left(\frac{v_{1}}{v_{2}}\right)^{\left(v_{1} / 2\right)} \frac{x^{\left(v_{1} / 2-1\right)}}{\left(1+\left(\frac{v_{1}}{v_{2}}\right) x\right)^{\left(v_{1} / 2+v_{2} / 2\right)}} \tag{74}
\end{equation*}
$$

for $0<x<\infty$ and v_{i} positive integer.

Let $X \sim \chi_{n}^{2}$ and $Z \sim \chi_{m}^{2}$ be independent RVs. Then, the RV G is distritbuted F with n and m degrees of freedom.

$$
\begin{equation*}
G=\frac{X / n}{Z / m} \sim F_{(n, m)} \tag{75}
\end{equation*}
$$

24 Constructing Confidence Intervals for θ

In what follows, we consider 5 possible cases of limited information about the parameter(s) θ. For each case we study how to construct confidence intervals.

24.1 Case 1: $\hat{\theta} \sim N(\theta, \operatorname{Var}(\hat{\theta}))$ and $\operatorname{Var}(\hat{\theta})$ known

We just saw an example of this case in Example 22.2. Note that in this example $\theta=\mu$, $\hat{\theta}=\bar{X}$, and the $\operatorname{Var}(\hat{\theta})$ is known since σ is known.
24.2 Case 2: $\hat{\theta} \sim N(\theta, \operatorname{Var}(\hat{\theta}))$ and $\operatorname{Var}(\hat{\theta})$ unknown

Example 24.1. Assume as in Example 22.2 a normal random sample, but now both μ and σ_{2} are unknown. Construct a 95% confidence interval of μ.

24.3 Case 3: $\hat{\theta}$ not $\sim N()$ but pmf/pdf known

We just saw an example of this case in Example 22.1. Note that in this example $\theta=\sigma^{2}$, $\hat{\theta}=S^{2}$, and the pdf of $\hat{\theta}$ (a function of $\hat{\theta}$ in this case) is known and depends only on one parameter, σ^{2}.

24.4 Case 4: $\hat{\theta} \sim$ not Normal, pmf/pdf unknown, and $n>30$

Example 24.2. Assume a random sample of size n from a population $f(x)$, which is unknown. Construct a 99% confidence interval of $\mu=E\left(X_{i}\right)$.
24.5 Case 5: $\hat{\theta} \sim$ not Normal, pmf/pdf unknown, and $n<30$

[^0]: *Caution: These notes are not necessarily self-explanatory notes. They are to be used as a complement to (and not as a substitute for) the lectures.

