MIT OpenCourseWare
http://ocw.mit.edu

14.30 Introduction to Statistical Methods in Economics

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Problem Set \#6

14.30 - Intro. to Statistical Methods in Economics

Instructor: Konrad Menzel
Due: Tuesday, April 7, 2009

Question One

Let X be a random variable that is uniformly distributed on $[0,1]$ (i.e. $f(x)=1$ on that interval and zero elsewhere). In Problem Set \#4, you use the "2-step"/CDF technique and the transformation method to determine the PDF of each of the following transformations, $Y=g(X)$. Now that you have the PDFs, compute (a) $\mathbb{E}[g(X)]$, (b) $g(\mathbb{E}[X])$, (c) $\operatorname{Var}(g(X))$ and $(\mathrm{d}) g(\operatorname{Var}(X))$ for each of the following transformations:

1. $Y=X^{\frac{1}{4}}, f_{Y}(y)=4 y^{3}$ on $[0,1]$ and zero otherwise.
2. $Y=e^{-X}, f_{Y}(y)=\frac{1}{y}$ on $\left[\frac{1}{e}, 1\right]$ and zero otherwise.
3. $Y=1-e^{-X}, f_{Y}(y)=\frac{1}{1-y}$ on $\left[0,1-\frac{1}{e}\right]$ and zero otherwise.
4. How does (a) $\mathbb{E}[g(X)]$ compare to (b) $g(\mathbb{E}[X])$ and (c) $\operatorname{Var}(g(X))$ to (d) $g(\operatorname{Var}(X))$ for each of the above transformations? Are there any generalities that can be noted? Explain.

Question Two

Compute the expectation and the variance for each of the following PDF's.

1. $f_{X}(x)=a x^{a-1}, 0<x<1, a>0$.
2. $f_{X}(x)=\frac{1}{n}, x=1,2, \ldots, n$, where n is an integer.
3. $f_{X}(x)=\frac{3}{2}(x-1)^{2}, 0<x<2$.

Question Three

Suppose that X, Y, and Z are independently and identically distributed with mean zero and variance one. Calculate the following:

1. $\mathbb{E}[3 X+2 Y+Z]$
2. $\operatorname{Var}[5 X-3 Y-2 Z]$
3. $\operatorname{Cov}[X-Y+4,2 X+3 Y+Z]$
4. $E[3 X Y]$

Question Four

Simplify the following expressions for random variables X and Y and scalar constants $a, b \in$ \mathbb{R} :

1. $\operatorname{Var}(a X+b)$
2. $\operatorname{Cov}(a X+c, b Y+d)$
3. $\operatorname{Var}(a X+b Y)$

Question Five

(Bain/Engelhardt p.190)
Suppose X and Y are continuous random variables with joint PDF $f(x, y)=4(x-x y)$ if $0<x<1$ and $0<y<1$, and zero otherwise.

1. Find $\mathbb{E}\left[X^{2} Y\right]$.
2. Find $\mathbb{E}[X-Y]$.
3. Find $\operatorname{Var}(X-Y)$.
4. What is the value of the correlation coefficient, $\rho_{X Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}$, of X and Y ?
5. What is $\mathbb{E}[Y \mid x]$?

Question Six

(Bain/Engelhardt p. 191)
Let X and Y have joint pdf $f(x, y)=e^{-y}$ if $0<x<y<\infty$ and zero otherwise. Find $\mathbb{E}[X \mid y]$.

Question Seven

Let X be a uniform random variable defined over the interval (a, b), i.e. $f(x)=\frac{1}{b-a}$. The $k^{t h}$ central moment of X is defined as $\mu_{k}=\mathbb{E}\left[(X-\mathbb{E}[X])^{k}\right]$. The standardized central moment is defined as $\frac{\mu_{k}}{\left(\mu_{2}\right)^{\frac{k}{2}}}$. Find an expression for the $k^{t h}$ standardized central moment of X.

