14.30 Introduction to Statistical Methods in Economics Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Problem Set #6 14.30 - Intro. to Statistical Methods in Economics Instructor: Konrad Menzel

Due: Tuesday, April 7, 2009

Question One

Let X be a random variable that is uniformly distributed on [0,1] (i.e. f(x) = 1 on that interval and zero elsewhere). In Problem Set #4, you use the "2-step"/CDF technique and the transformation method to determine the PDF of each of the following transformations, Y = g(X). Now that you have the PDFs, compute (a) $\mathbb{E}[g(X)]$, (b) $g(\mathbb{E}[X])$, (c) Var(g(X))and (d) g(Var(X)) for each of the following transformations:

- 1. $Y = X^{\frac{1}{4}}, f_Y(y) = 4y^3$ on [0, 1] and zero otherwise.
- 2. $Y = e^{-X}$, $f_Y(y) = \frac{1}{y}$ on $[\frac{1}{e}, 1]$ and zero otherwise.
- 3. $Y = 1 e^{-X}$, $f_Y(y) = \frac{1}{1-y}$ on $[0, 1 \frac{1}{e}]$ and zero otherwise.
- 4. How does (a) $\mathbb{E}[g(X)]$ compare to (b) $g(\mathbb{E}[X])$ and (c) Var(g(X)) to (d) g(Var(X)) for each of the above transformations? Are there any generalities that can be noted? Explain.

Question Two

Compute the expectation and the variance for each of the following PDF's.

- 1. $f_X(x) = ax^{a-1}, 0 < x < 1, a > 0.$
- 2. $f_X(x) = \frac{1}{n}, x = 1, 2, ..., n$, where *n* is an integer.
- 3. $f_X(x) = \frac{3}{2}(x-1)^2, \ 0 < x < 2.$

Question Three

Suppose that X, Y, and Z are independently and identically distributed with mean zero and variance one. Calculate the following:

- 1. $\mathbb{E}[3X + 2Y + Z]$
- 2. Var[5X 3Y 2Z]
- 3. Cov[X Y + 4, 2X + 3Y + Z]
- 4. E[3XY]

Question Four

Simplify the following expressions for random variables X and Y and scalar constants $a, b \in \mathbb{R}$:

- 1. Var(aX+b)
- 2. Cov(aX + c, bY + d)
- 3. Var(aX + bY)

Question Five

(Bain/Engelhardt p.190)

Suppose X and Y are continuous random variables with joint PDF f(x, y) = 4(x - xy) if 0 < x < 1 and 0 < y < 1, and zero otherwise.

- 1. Find $\mathbb{E}[X^2Y]$.
- 2. Find $\mathbb{E}[X Y]$.
- 3. Find Var(X Y).

4. What is the value of the correlation coefficient, $\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$, of X and Y?

5. What is $\mathbb{E}[Y|x]$?

Question Six

(Bain/Engelhardt p. 191)

Let X and Y have joint pdf $f(x, y) = e^{-y}$ if $0 < x < y < \infty$ and zero otherwise. Find $\mathbb{E}[X|y]$.

Question Seven

Let X be a uniform random variable defined over the interval (a, b), i.e. $f(x) = \frac{1}{b-a}$. The k^{th} central moment of X is defined as $\mu_k = \mathbb{E}[(X - \mathbb{E}[X])^k]$. The standardized central moment is defined as $\frac{\mu_k}{(\mu_2)^{\frac{k}{2}}}$. Find an expression for the k^{th} standardized central moment of X.