MIT OpenCourseWare
http://ocw.mit.edu

14.30 Introduction to Statistical Methods in Economics

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Problem Set \#6 - Solution

14.30 - Intro. to Statistical Methods in Economics

Instructor: Konrad Menzel
Due: Tuesday, April 7, 2009

Question One

Let X be a random variable that is uniformly distributed on $[0,1]$ (i.e. $f(x)=1$ on that interval and zero elsewhere). In Problem Set \#4, you use the "2-step"/CDF technique and the transformation method to determine the PDF of each of the following transformations, $Y=g(X)$. Now that you have the PDFs, compute (a) $\mathbb{E}[g(X)]$, (b) $g(\mathbb{E}[X])$, (c) $\operatorname{Var}(g(X))$ and (d) $g(\operatorname{Var}(X))$ for each of the following transformations:

1. $Y=X^{\frac{1}{4}}, f_{Y}(y)=4 y^{3}$ on $[0,1]$ and zero otherwise.

- Solution to 1: We compute the four components:
(a) $\mathbb{E}[g(X)]=\int_{0}^{1} y\left(4 y^{3}\right) d y=\left(\frac{4}{5} y^{5}\right)_{0}^{1}=\frac{4}{5}=0.80$ or we can compute it using X :

$$
\mathbb{E}[g(X)]=\int_{0}^{1} x^{\frac{1}{4}} d x=\left(\frac{4}{5} x^{\frac{5}{4}}\right)_{0}^{1}=\frac{4}{5} .
$$

(b) $g(\mathbb{E}[X])=\left(\int_{0}^{1} x d x\right)^{\frac{1}{4}}=\left(\frac{1}{2}\right)^{\frac{1}{4}}=\frac{1}{\sqrt[4]{2}}=0.84$.
(c) The variance uses the result in part (a)

$$
\begin{aligned}
\operatorname{Var}(g(X)) & =\int_{0}^{1}\left(y-\frac{4}{5}\right)^{2}\left(4 y^{3}\right) d y \\
& =4 \int_{0}^{1}\left(y^{5}-\frac{8}{5} \cdot y^{4}+\frac{16}{25} \cdot y^{3}\right) d y \\
& =4\left(\frac{1}{6} y^{6}-\frac{8}{25} \cdot y^{5}+\frac{4}{25} \cdot y^{4}\right)_{0}^{1} \\
& =4\left(\frac{1}{6}-\frac{8}{25}+\frac{4}{25}\right)=4\left(\frac{25}{150}-\frac{24}{150}\right) \\
\operatorname{Var}(g(X)) & =\frac{2}{75}=0.02667
\end{aligned}
$$

(d) We need to compute $\operatorname{Var}(X)$ first:

$$
\begin{aligned}
\operatorname{Var}(X) & =\int_{0}^{1}\left(x-\frac{1}{2}\right)^{2} d x \\
& =\int_{0}^{1}\left(x^{2}-x+\frac{1}{4}\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+\frac{1}{4} x\right]_{0}^{1} \\
& =\frac{1}{3}-\frac{1}{2}+\frac{1}{4} \\
\operatorname{Var}(X) & =\frac{1}{12}
\end{aligned}
$$

And then transform it: $g(\operatorname{Var}(X))=\left(\frac{1}{12}\right)^{\frac{1}{4}}=\frac{1}{\sqrt[4]{12}}=0.537$
2. $Y=e^{-X}, f_{Y}(y)=\frac{1}{y}$ on $\left[\frac{1}{e}, 1\right]$ and zero otherwise.

- Solution to 2: We compute the four components:
(a) $\mathbb{E}[g(X)]=\int_{\frac{1}{2}}^{1} y\left(\frac{1}{y}\right) d y=(y)_{0}^{1}=1-\frac{1}{e}=0.632$ or we can compute it using X :

$$
\mathbb{E}[g(X)]=\int_{0}^{1} e^{-x} d x=\left(-e^{-x}\right)_{0}^{1}=-\frac{1}{e}+1 .
$$

(b) $g(\mathbb{E}[X])=e^{-\left(\int_{0}^{1} x d x\right)}=e^{-\left(\frac{1}{2}\right)}=0.607$.
(c) The variance uses the result in part (a), $\bar{y} \equiv \mathbb{E}[Y]=1-\frac{1}{e}$,

$$
\begin{aligned}
\operatorname{Var}(g(X)) & =\int_{\frac{1}{e}}^{1}(y-\bar{y})^{2} \frac{1}{y} d y \\
& =\int_{\frac{1}{e}}^{1}\left(y-2 \bar{y}+\bar{y}^{2} \cdot \frac{1}{y}\right) d y \\
& =\left(\frac{1}{2} y^{2}-2 \bar{y} \cdot y+\bar{y}^{2} \log y\right)_{\frac{1}{e}}^{1} \\
& =\left(\frac{1}{2}-2\left(1-\frac{1}{e}\right)-\left(\frac{1}{2} \frac{1}{e^{2}}-2\left(1-\frac{1}{e}\right) \cdot \frac{1}{e}-\left(1-\frac{1}{e}\right)^{2}\right)\right) \\
& =\left(\frac{1}{2}-2+\frac{2}{e}-\frac{1}{2} \frac{1}{e^{2}}+\frac{2}{e}-\frac{2}{e^{2}}+1-\frac{2}{e}+\frac{1}{e^{2}}\right) \\
& =-\frac{1}{2}\left(1-4 \frac{1}{e}+3 \frac{1}{e^{2}}\right) \\
& =-\frac{1}{2}\left(1-\frac{1}{e}\right)\left(1-3 \frac{1}{e}\right) \\
\operatorname{Var}(g(X)) & =0.033
\end{aligned}
$$

(d) Using $\operatorname{Var}(X)$ from part $(\mathrm{a}), \operatorname{Var}(X)=\frac{1}{12}$, we apply $g(\cdot): g(\operatorname{Var}(X))=$ $e^{-\frac{1}{12}}=0.920$.
3. $Y=1-e^{-X}, f_{Y}(y)=\frac{1}{1-y}$ on $\left[0,1-\frac{1}{e}\right]$ and zero otherwise.

- Solution to 2: We compute the four components:
(a) We need to do a little more algebra for this problem:

$$
\begin{aligned}
\mathbb{E}[g(X)] & =\int_{0}^{1-\frac{1}{e}} y\left(\frac{1}{1-y}\right) d y \\
& =\int_{0}^{1-\frac{1}{e}}\left(\frac{y}{1-y}+\frac{1-y}{1-y}-1\right) d y \\
& =\int_{0}^{1-\frac{1}{e}}\left(\frac{1}{1-y}-1\right) d y \\
& =(-\log (1-y)-y)_{0}^{1-\frac{1}{e}} \\
\mathbb{E}[g(X)] & =1-1+\frac{1}{e}=\frac{1}{e}=0.368
\end{aligned}
$$

or we can compute it using $X: \mathbb{E}[g(X)]=\int_{0}^{1}\left(1-e^{-x}\right) d x=\left(x+e^{-x}\right)_{0}^{1}=$ $1+\frac{1}{e}-1=\frac{1}{e}$.
(b) $g(\mathbb{E}[X])=1-e^{-\left(\int_{0}^{1} x d x\right)}=1-e^{-\left(\frac{1}{2}\right)}=0.393$.
(c) The variance uses the result in part (a), $\bar{y} \equiv \mathbb{E}[Y]=\frac{1}{e}$, combined with one of the identities for the variance:

$$
\begin{aligned}
\operatorname{Var}(g(X)) & =\mathbb{E}\left[g(X)^{2}\right]-\mathbb{E}[g(X)]^{2} \\
& =\int_{0}^{1-\frac{1}{e}} y^{2} \frac{1}{1-y} d y-\frac{1}{e^{2}} \\
& =\int_{0}^{1-\frac{1}{e}} y\left(\frac{1}{1-y}-1\right) d y-\frac{1}{e^{2}} \\
& =\int_{0}^{1-\frac{1}{e}}\left(\frac{y}{1-y}-y+\frac{1-y}{1-y}-1\right) d y-\frac{1}{e^{2}} \\
& =\int_{0}^{1-\frac{1}{e}}\left(-y+\frac{1}{1-y}-1\right) d y-\frac{1}{e^{2}} \\
& =\left(-\frac{1}{2} y^{2}-\log (1-y)-y\right)_{0}^{1-\frac{1}{e}}-\frac{1}{e^{2}} \\
\operatorname{Var}(g(X)) & =0.0328
\end{aligned}
$$

(d) Using $\operatorname{Var}(X)$ from part $(\mathrm{a}), \operatorname{Var}(X)=\frac{1}{12}$, we apply $g(\cdot): g(\operatorname{Var}(X))=$ $1-e^{-\frac{1}{12}}=0.080$.
4. How does (a) $\mathbb{E}[g(X)]$ compare to (b) $g(\mathbb{E}[X])$ and (c) $\operatorname{Var}(g(X))$ to (d) $g(\operatorname{Var}(X))$ for each of the above transformations? Are there any generalities that can be noted? Explain.

- Solution to 1: The table below gives the comparisons:

	(a)	(b)	(c)	(d)
$X^{\frac{1}{4}}$	0.80	0.84	0.027	0.537
e^{-X}	0.632	0.607	0.033	0.920
$1-e^{-X}$	0.368	0.393	0.033	0.080

What we see is that concave functions like $X^{\frac{1}{4}}$ and $1-e^{-X}$ have $\mathbb{E}[g(X)]<g(\mathbb{E}[X])$ and convex functions have $\mathbb{E}[g(X)]>g(\mathbb{E}[X])$. This is just an example of Jensen's inequality, that except for linear $g(\cdot), \mathbb{E}[g(X)] \neq g(\mathbb{E}[X])$. An extension of Jensen's inequality for the variance would be to define $h(x)=(g(x)-\mathbb{E}[g(x)])^{2}$ and determine whether $h(\cdot)$ is concave or convex, depending on the concavity of $g(\cdot)$. Well, a quick derivation yields:

$$
\begin{aligned}
\frac{\partial}{\partial x} h(x) & =2(g(x)-\mathbb{E}[g(x)]) g^{\prime}(x) \\
\frac{\partial^{2}}{\partial x^{2}} h(x) & =2(\underbrace{g^{\prime}(x) g^{\prime}(x)}_{+}-\underbrace{\mathbb{E}[g(x)]}_{+/-} \underbrace{g^{\prime \prime}(x)}_{+/-}
\end{aligned}
$$

So, basically, the concavity is completely ambiguous as it depends upon $\mathbb{E}[g(x)]$ which can be positive or negative for any function. Thus, we generally can't say anything about how $g(\operatorname{Var}(X))$ should compare to $\operatorname{Var}(g(X))$, except, perhaps that they're generally not equal, even though we can't sign the bias, unless, of course, $g(\cdot)$ is linear. Then we are guaranteed to have a convex function, as $\frac{\partial^{2}}{\partial x^{2}} h(x)>0$ since the second term is zeroed out.

Question Two

Compute the expectation and the variance for each of the following PDF's.

1. $f_{X}(x)=a x^{a-1}, 0<x<1, a>0$.

- Solution to 1: We first compute the expectation.

$$
\begin{aligned}
\mathbb{E}[X] & =\int_{0}^{1} x \cdot a x^{a-1} d x \\
& =\int_{0}^{1} a x^{a} d x \\
& =\left.\frac{a}{a+1} x^{a+1}\right|_{0} ^{1} \\
\mathbb{E}[X] & =\frac{a}{a+1}
\end{aligned}
$$

Now, we compute the variance.

$$
\begin{aligned}
\operatorname{Var}(X) & =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2} \\
& =\int_{0}^{1} x^{2} \cdot a x^{a-1} d x-\mathbb{E}[X]^{2} \\
& =\int_{0}^{1} a x^{a+1} d x-\mathbb{E}[X]^{2} \\
& =\left.\frac{a}{a+2} x^{a+2}\right|_{0} ^{1}-\left(\frac{a}{a+1}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{a}{a+2}-\left(\frac{a}{a+1}\right)^{2} \\
\operatorname{Var}(X) & =\frac{a}{(a+2)(a+1)^{2}}
\end{aligned}
$$

2. $f_{X}(x)=\frac{1}{n}, x=1,2, \ldots, n$, where n is an integer.

- Solution to 2: We first compute the expectation.

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{x=1}^{n} \frac{1}{n} x \\
& =\frac{1}{n} \sum_{x=1}^{n} x \\
& =\frac{1}{n} \frac{n(n+1)}{2} \\
\mathbb{E}[X] & =\frac{n+1}{2}
\end{aligned}
$$

And then, we compute the variance. We need to know the sum of the finite series $\sum_{x=1}^{n} x^{2}$ (there are many clever ways to compute this, or you can find it at http://en.wikipedia.org/wiki/List_of_mathematical_series).

$$
\begin{aligned}
\operatorname{Var}(X) & =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2} \\
& =\sum_{x=1}^{n} \frac{1}{n} x^{2}-\left(\frac{n+1}{2}\right)^{2} \\
& =\frac{1}{n} \sum_{x=1}^{n} x^{2}-\left(\frac{n+1}{2}\right)^{2} \\
& =\frac{1}{n} \frac{n(n+1)(2 n+1)}{6}-\left(\frac{n+1}{2}\right)^{2} \\
& =(n+1)\left(\frac{2 n+1}{6}-\frac{3 n+3}{12}\right) \\
& =\frac{(n+1)(n-1)}{12}=\frac{1}{12}\left(n^{2}-1\right) \\
\operatorname{Var}(X) & =\frac{1}{12}\left(n^{2}-1\right)
\end{aligned}
$$

3. $f_{X}(x)=\frac{3}{2}(x-1)^{2}, 0<x<2$.

- Solution to 3: Compute the expecation.

$$
\begin{aligned}
\mathbb{E}[X] & =\int_{0}^{2} x \cdot \frac{3}{2}(x-1)^{2} d x \\
& =\frac{3}{2} \int_{0}^{2}\left(x^{3}-2 x^{2}+x\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{3}{2}\left(\frac{1}{4} x^{4}-\frac{2}{3} x^{3}+\frac{1}{2} x^{2}\right)_{0}^{2} \\
& =\frac{3}{2}\left(\frac{1}{4} 16-\frac{2}{3} 8+\frac{1}{2} 4\right) \\
\mathbb{E}[X] & =1
\end{aligned}
$$

And now compute the variance.

$$
\begin{aligned}
\operatorname{Var}(X) & =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2} \\
& =\int_{0}^{2} x^{2} \cdot \frac{3}{2}(x-1)^{2} d x-1 \\
& =\frac{3}{2} \int_{0}^{2}\left(x^{4}-2 x^{3}+x^{2}\right) d x-1 \\
& =\frac{3}{2}\left(\frac{1}{5} x^{5}-\frac{1}{2} x^{4}+\frac{1}{3} x^{3}\right)_{0}^{2}-1 \\
& =\frac{3}{2}\left(\frac{1}{5} 32-\frac{1}{2} 16+\frac{1}{3} 8\right)-1 \\
\operatorname{Var}(X) & =\frac{3}{5}
\end{aligned}
$$

Question Three

Suppose that X, Y, and Z are independently and identically distributed with mean zero and variance one. Calculate the following:

1. $\mathbb{E}[3 X+2 Y+Z]$

- Solution to $1: \mathbb{E}[3 X+2 Y+Z]=3 \mathbb{E}[X]+2 \mathbb{E}[Y]+\mathbb{E}[Z]=3 \cdot 0+2 \cdot 0+1 \cdot 0=0$.

2. $\operatorname{Var}[5 X-3 Y-2 Z]$

- Solution to 2 :

$$
\begin{aligned}
\operatorname{Var}[5 X-3 Y-2 Z] & =\operatorname{Var}(5 X)+\operatorname{Var}(-3 Y)+\operatorname{Var}(-2 Z) \\
& =25 \operatorname{Var}(X)+9 \operatorname{Var}(Y)+4 \operatorname{Var}(Z) \\
& =25 \cdot 1+9 \cdot 1+4 \cdot 1 \\
\operatorname{Var}[5 X-3 Y-2 Z] & =38
\end{aligned}
$$

3. $\operatorname{Cov}[X-Y+4,2 X+3 Y+Z]$

- Solution to 3 :

$$
\begin{aligned}
\operatorname{Cov}[X-Y+4,2 X+3 Y+Z]= & \operatorname{Cov}[X-Y, 2 X+3 Y+Z] \\
= & \operatorname{Cov}[X, 2 X]+\operatorname{Cov}(X, 3 Y)+\operatorname{Cov}(X, Z) \\
& +\operatorname{Cov}(-Y, 2 X)+\operatorname{Cov}(-Y, 3 Y)+\operatorname{Cov}(-Y, Z)
\end{aligned}
$$

$$
\begin{aligned}
= & 2 \operatorname{Var}(X)+3 \cdot \operatorname{Cov}(X, Y)+\operatorname{Cov}(X, Z) \\
& -2 \cdot \operatorname{Cov}(Y, X)-3 \cdot \operatorname{Var}(Y)-\operatorname{Cov}(Y, Z) \\
= & 2 \cdot 1+3 \cdot 0+1 \cdot 0-2 \cdot 0-3 \cdot 1-1 \cdot 0 \\
\operatorname{Cov}[X-Y+4,2 X+3 Y+Z]= & -1
\end{aligned}
$$

4. $E[3 X Y]$

- Solution to 4 :

$$
\begin{aligned}
E[3 X Y] & =\int_{x \in X} \int_{y \in Y} 3 x y f(x, y) d y d x \\
& =3 \int_{x \in X} \int_{y \in Y} x y f_{X}(x) f_{Y}(y) d y d x \\
& =3 \int_{x \in X} x f_{X}(x) d x \int_{y \in Y} y f_{Y}(y) d y \\
& =3 \mathbb{E}[X] \mathbb{E}[Y]=3 \cdot 0 \cdot 0 \\
E[3 X Y] & =0
\end{aligned}
$$

Question Four

Simplify the following expressions for random variables X and Y and scalar constants $a, b \in$ \mathbb{R} :

1. $\operatorname{Var}(a X+b)$

- Solution to 1: $\operatorname{Var}(a X+b)=\operatorname{Var}(a X)=a^{2} \operatorname{Var}(X)$.

2. $\operatorname{Cov}(a X+c, b Y+d)$

- Solution to 2: $\operatorname{Cov}(a X+c, b Y+d)=\operatorname{Cov}(a X, b Y)=a b \operatorname{Cov}(X, Y)$.

3. $\operatorname{Var}(a X+b Y)$

- Solution to 3:

$$
\begin{aligned}
\operatorname{Var}(a X+b Y) & =\operatorname{Var}(a X)+\operatorname{Var}(b Y)+2 \operatorname{Cov}(a X, b Y) \\
& =a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)+2 a b \operatorname{Cov}(X, Y)
\end{aligned}
$$

Question Five

(Bain/Engelhardt p.190)
Suppose X and Y are continuous random variables with joint PDF $f(x, y)=4(x-x y)$ if $0<x<1$ and $0<y<1$, and zero otherwise.

1. Find $\mathbb{E}\left[X^{2} Y\right]$.

- Solution to 1 :

$$
\begin{aligned}
\mathbb{E}\left[X^{2} Y\right] & =\int_{0}^{1} \int_{0}^{1} x^{2} y \cdot 4(x-x y) d y d x \\
& =\int_{0}^{1} \int_{0}^{1} 4\left(x^{3} y-x^{3} y^{2}\right) d y d x \\
& =\int_{0}^{1} 4\left(\frac{1}{2} x^{3} y^{2}-\frac{1}{3} x^{3} y^{3}\right)_{0}^{1} d x \\
& =\int_{0}^{1} 4\left(\frac{1}{2} x^{3}-\frac{1}{3} x^{3}\right) d x \\
& =\int_{0}^{1} \frac{2}{3} x^{3} d x=\left.\frac{2}{12} x^{4}\right|_{0} ^{1} \\
\mathbb{E}\left[X^{2} Y\right] & =\frac{1}{6}
\end{aligned}
$$

2. Find $\mathbb{E}[X-Y]$.

- Solution to 2:

$$
\begin{aligned}
\mathbb{E}[X-Y] & =\mathbb{E}[X]-\mathbb{E}[Y] \\
& =\int_{0}^{1} \int_{0}^{1}(x-y) \cdot 4(x-x y) d y d x \\
& =4 \int_{0}^{1} \int_{0}^{1}\left(x^{2}-x^{2} y-x y+x y^{2}\right) d y d x \\
& =4 \int_{0}^{1}\left(x^{2} y-\frac{1}{2} x^{2} y^{2}-\frac{1}{2} x y^{2}+\frac{1}{3} x y^{3}\right)_{0}^{1} d x \\
& =4 \int_{0}^{1}\left(x^{2}-\frac{1}{2} x^{2}-\frac{1}{2} x+\frac{1}{3} x\right) d x \\
& =4\left(\frac{1}{3} x^{3}-\frac{1}{6} x^{3}-\frac{1}{4} x^{2}+\frac{1}{6} x^{2}\right)_{0}^{1} \\
& =4\left(\frac{1}{3}-\frac{1}{6}-\frac{1}{4}+\frac{1}{6}\right) \\
& =\frac{1}{3}
\end{aligned}
$$

If we look carefully, we can see what the $\mathbb{E}[X]$ and $\mathbb{E}[Y]$ are:

$$
\begin{aligned}
& \mathbb{E}[X]=4\left(\frac{1}{3}-\frac{1}{6}\right)=\frac{2}{3} \\
& \mathbb{E}[Y]=4\left(\frac{1}{4}-\frac{1}{6}\right)=\frac{1}{3}
\end{aligned}
$$

We will use these later on.

3. Find $\operatorname{Var}(X-Y)$.

- Solution to 3:

$$
\begin{aligned}
\operatorname{Var}(X-Y) & =\mathbb{E}\left[(X-Y)^{2}\right]-\mathbb{E}[X-Y]^{2} \\
& =\int_{0}^{1} \int_{0}^{1}(x-y)^{2} \cdot 4(x-x y) d y d x-\frac{1}{9} \\
& =\int_{0}^{1} \int_{0}^{1}\left(x^{2}-2 x y+y^{2}\right) \cdot 4(x-x y) d y d x-\frac{1}{9} \\
& =4 \int_{0}^{1} \int_{0}^{1}\left(x^{3}-x^{3} y-2 x^{2} y+2 x^{2} y^{2}+x y^{2}-x y^{3}\right) d y d x-\frac{1}{9} \\
& =4 \int_{0}^{1}\left(x^{3} y-\frac{1}{2} x^{3} y^{2}-x^{2} y^{2}+\frac{2}{3} x^{2} y^{3}+\frac{1}{3} x y^{3}-\frac{1}{4} x y^{4}\right)_{0}^{1} d x-\frac{1}{9} \\
& =4 \int_{0}^{1}\left(x^{3}-\frac{1}{2} x^{3}-x^{2}+\frac{2}{3} x^{2}+\frac{1}{3} x-\frac{1}{4} x\right) d x-\frac{1}{9} \\
& =4\left(\frac{1}{4} x^{4}-\frac{1}{8} x^{4}-\frac{1}{3} x^{3}+\frac{2}{9} x^{3}+\frac{1}{6} x^{2}-\frac{1}{8} x^{2}\right)_{0}^{1}-\frac{1}{9} \\
& =4\left(\frac{1}{4}-\frac{1}{8}-\frac{1}{3}+\frac{2}{9}+\frac{1}{6}-\frac{1}{8}\right)-\frac{1}{9} \\
\operatorname{Var}(X-Y) & =\frac{1}{9}
\end{aligned}
$$

Again, if we look carefully at our algebra, we will see that we have computed $\mathbb{E}\left[X^{2}\right], \mathbb{E}\left[Y^{2}\right]$, and $\mathbb{E}[X Y]:$

$$
\begin{aligned}
\mathbb{E}\left[X^{2}\right] & =\frac{1}{2} \\
\mathbb{E}\left[Y^{2}\right] & =\frac{1}{6} \\
\mathbb{E}[X Y] & =\frac{2}{9}
\end{aligned}
$$

4. What is the value of the correlation coefficient, $\rho_{X Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}$, of X and Y ?

- Solution to 4: We need to compute all three pieces of the correlation cofficient. We start with the covariance, using the moments obtained above:

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y] \\
& =\frac{2}{9}-\frac{2}{3} \cdot \frac{1}{3} \\
\operatorname{Cov}(X, Y) & =0 \\
\operatorname{Var}(X) & =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2} \\
& =\frac{1}{2}-\left(\frac{2}{3}\right)^{2} \\
\operatorname{Var}(X) & =\frac{1}{18}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}(Y) & =\mathbb{E}\left[Y^{2}\right]-\mathbb{E}[Y]^{2} \\
& =\frac{1}{6}-\left(\frac{1}{3}\right)^{2} \\
\operatorname{Var}(Y) & =\frac{1}{18}
\end{aligned}
$$

Now, it is certainly clear that

$$
\rho_{X Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}=\frac{0}{\sqrt{\frac{1}{18} \cdot \frac{1}{18}}}=0
$$

For those of you who noticed the rectangular support for X and Y as well as the ability to factor the joint PDF, $f(x, y)=4(x-x y)$ into $f_{X}(x)=2 x$ and $f_{Y}(y)=2(1-y)$, you would've seen right away that X and Y were independent, meaning that the correlation coefficient should be zero since the covariance would be zero for two independent random variables.
5. What is $\mathbb{E}[Y \mid x]$?

- Solution to 5 : In order to get $\mathbb{E}[Y \mid x]$ we need to compute the conditional density using the marginal of X which we guessed above upon recognizing the zero covariance for a linear density (zero correlation does not imply independence-consider a uniform density over $[-1,1]$ for X and $Y=X^{2}$ which are clearly not independent, but their covariance will actually be zero):

$$
f(y \mid x)=\frac{f(x, y)}{f_{X}(x)}=\frac{4 x(1-y)}{2 x}=2(1-y) .
$$

But, this is obvious, since X and Y are independent, $f(y \mid x)=f_{Y}(y)$ which means that $\mathbb{E}[Y \mid x]=\mathbb{E}[Y]=\frac{1}{3}$.

Question Six

(Bain/Engelhardt p. 191)
Let X and Y have joint pdf $f(x, y)=e^{-y}$ if $0<x<y<\infty$ and zero otherwise. Find $\mathbb{E}[X \mid y]$.

- Solution: We've already seen this style of problem before. What we need to do is obtain the distribution of X conditional on $Y=y$ so we can then compute its expectation. We first need the marginal distribution of Y in order to do this. We compute it:

$$
\begin{aligned}
f_{Y}(y) & =\int_{0}^{y} e^{-y} d x \\
& =\left.x e^{-y}\right|_{0} ^{y} \\
f_{Y}(y) & =y e^{-y}
\end{aligned}
$$

and then plug it into the formula for the conditional distribution of $X \mid y$:

$$
f(X \mid y)=\frac{f(x, y)}{f_{Y}(y)}=\frac{e^{-y}}{y e^{-y}}=\frac{1}{y} .
$$

With this, we can now compute the conditional expectation:

$$
\begin{aligned}
& \mathbb{E}[X \mid y]=\int_{0}^{y} \frac{1}{y} x d x \\
&=\left.\frac{1}{y} \frac{1}{2} x^{2}\right|_{\mid x=0} ^{x=y} \\
& x=
\end{aligned}
$$

Question Seven

Let X be a uniform random variable defined over the interval (a, b), i.e. $f(x)=\frac{1}{b-a}$. The $k^{t h}$ central moment of X is defined as $\mu_{k}=\mathbb{E}\left[(X-\mathbb{E}[X])^{k}\right]$. The standardized central moment is defined as $\frac{\mu_{k}}{\left(\mu_{2}\right)^{\frac{k}{2}}}$. Find an expression for the $k^{t h}$ standardized central moment of X.

- Solution: We just need to figure out an expression for the second central moment (the variance) and then generalize the formula to the $k^{\text {th }}$ moment and then plug in the components to the formula. First, note that for the uniform distribution, its expectation is just the midpoint between the endpoints of the support: $\mathbb{E}[X]=\frac{b+a}{2}$.

$$
\mathbb{E}\left[(X-\mathbb{E}[X])^{k}\right]=\int_{a}^{b} \frac{1}{b-a}\left(x-\frac{b+a}{2}\right)^{k} d x
$$

We can easily solve this for $k=2$:

$$
\begin{aligned}
\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right] & =\int_{a}^{b} \frac{1}{b-a}\left(x-\frac{b+a}{2}\right)^{2} d x \\
& =\frac{1}{b-a} \int_{a}^{b}\left(x^{2}-(b+a)+\frac{(b+a)^{2}}{4}\right) d x \\
& =\frac{1}{b-a}\left(\frac{1}{3} x^{3}-\frac{(b+a)}{2} x^{2}+\frac{(b+a)^{2}}{4} x\right)_{a}^{b} \\
& =\frac{1}{b-a}\left(\frac{1}{3}\left(b^{3}-a^{3}\right)-\frac{(b+a)}{2}\left(b^{2}-a^{2}\right)+\frac{(b+a)^{2}}{4}(b-a)\right) \\
& =\frac{1}{b-a}\left(\frac{1}{3}(b-a)\left(b^{2}+a b+a^{2}\right)-\frac{(b+a)^{2}}{4}(b-a)\right) \\
& =\frac{1}{3} b^{2}+\frac{1}{3} a b+\frac{1}{3} a^{2}-\frac{1}{4} b^{2}-\frac{1}{4} 2 a b-\frac{1}{4} a^{2} \\
& =\frac{1}{12} b^{2}-\frac{1}{6} a b+\frac{1}{12} a^{2} \\
\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right] & =\frac{1}{12}(b-a)^{2}
\end{aligned}
$$

The observant reader will notice that we went to a lot of trouble to expand and then factor the expressions above. What we will now do is a change of variables in order to get the $k^{\text {th }}$ moment:

$$
\begin{aligned}
\mathbb{E}\left[(X-\mathbb{E}[X])^{k}\right] & =\int_{a}^{b} \frac{1}{b-a}\left(x-\frac{b+a}{2}\right)^{k} d x \\
& =\frac{1}{b-a} \int_{\frac{a-b}{2}}^{\frac{b-a}{2}} z^{k} d z \\
& =\left.\frac{1}{b-a} \frac{1}{k+1} z^{k+1}\right|_{\frac{a-b}{2}} ^{\frac{b-a}{2}} \\
& =\frac{1}{b-a} \frac{1}{k+1}\left[\left(\frac{b-a}{2}\right)^{k+1}-\left(\frac{a-b}{2}\right)^{k+1}\right] \\
& =\frac{1}{2^{k+1}(k+1)}\left[(b-a)^{k}+(a-b)^{k}\right] \\
\mathbb{E}\left[(X-\mathbb{E}[X])^{k}\right] & =\left(1+(-1)^{k}\right) \frac{(b-a)^{k}}{2^{k+1}(k+1)}
\end{aligned}
$$

That was substantially easier than obtaining the second moment. A quick check of our formula for $k=2$ ensures that we got it right: $\frac{2(b-a)^{2}}{2^{3} \cdot 3}=\frac{(b-a)^{2}}{12}$. We now apply the formula below:

$$
\begin{aligned}
\frac{\mu_{k}}{\left(\mu_{2}\right)^{\frac{k}{2}}} & =\frac{\mathbb{E}\left[(X-\mathbb{E}[X])^{k}\right]}{\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]^{\frac{k}{2}}} \\
& =\frac{\left(1+(-1)^{k}\right) \frac{(b-a)^{k}}{2^{k+1}(k+1)}}{\left(\frac{(b-a)^{2}}{12}\right)^{\frac{k}{2}}} \\
& =\frac{\left(1+(-1)^{k}\right) \frac{(b-a)^{k}}{2^{k+1}(k+1)}}{\frac{(b-a)^{k}}{2^{k}(\sqrt{3})^{k}}} \\
\frac{\mu_{k}}{\left(\mu_{2}\right)^{\frac{k}{2}}} & =\left(1+(-1)^{k}\right) \frac{(\sqrt{3})^{k}}{2(k+1)}
\end{aligned}
$$

Now we have a formula for the $k^{\text {th }}$ standardized central moment of the uniform distribution. Generate some uniformly distributed random numbers and check the formula!

