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1 Properties of Estimators (continued) 

1.1 Standard Error 

Often we also want to make statements about the precision of the estimator - we can always state the 
value of the estimate, but how confident are we that it is actually close to the true parameter? 

Definition 1 The standard error σ(θ̂) of an estimate is the standard deviation (or estimated standard 
deviation) of the estimator, 

SE(θ̂) = Var(θ̂(X1, . . . , Xn)) 

Should recall that an estimator is a function of the random variables, and therefore a random variable 
for which we can calculate expectation, variance and other moments. 

Example 1 The mean X̄n of an i.i.d. sample X1, . . . , Xn where Var(Xi) = σ2 has variance σ
n 

2 

. There
fore, the standard error is 

σ¯SE(Xn) = √
n 

If we don’t know σ2, we calculate the estimated standard error 

SÊ(X̄n) = √σ̂
n 

The standard error is a way of comparing the precision of estimators, and we’d obviously favor the 
estimator which has the smaller variance/standard error. 

Definition 2 If θ̂A and θ̂B are unbiased estimators for θ, i.e. Eθ0 [θ̂A] = Eθ0 [θ̂B] = θ0, then we say that 

θ̂A is efficient relative to θ̂B if 
Var(θ̂B) ≥ Var(θ̂A) 

Sometimes we look at an entire class of estimators Θ = {θ̂1, θ̂2, . . .}, and we say that θ̂A is efficient in 
that class if it has the lowest variance of all members of Θ. 

Example 2 Suppose that X and Y are scores from two different Math tests. You are interested in some 
underlying ”math ability”, and the two scores are noisy (and possibly correlated) measurements with 
E[X] = E[Y ] = µ, Var(X) = X , Var(Y ) = σY 

2 , and Cov(X, Y ) = . Instead of using only one of the σ2 σXY 

measurements, you decide to combine them into a weighted average pX + (1 − p)Y instead. What is the 
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expectation of this weighted average? Which value of p minimizes the variance of the weighted average?

We can interpret this as an estimation problem in which we want to estimate µ using a sample of only

two observations. Since all weighted averages of X and Y have mean µ, we’ll try to find the efficient

estimator.

From the formula of the variance of a sum of random variables,


σ2 σ2Var(pX + (1 − p)Y ) = p 2 X + 2p(1 − p)σXY + (1 − p)2 Y 

In order to find the optimal p, we set the first derivative equal to zero, i.e. 

0 = X + 2(1 − 2p)σXY − 2(1 − p)σ22pσ2 
Y 

X + σ2Solving for p, we get, assuming that σ2 
Y > 2σXY (notice that this is also the sufficient condition for 

a local minimum) 

∗ σY 
2 − σXY Var(Y ) − Cov(X, Y ) Cov(Y − X, Y ) 

p = = = 
σ2 Var(Y − X) Var(Y − X)X − 2σXY + σ2 

Y 

2 
Y∗ σ

Note that if X and Y are uncorrelated, the efficient estimator puts weight p on X which is = 2 
X

2 
Y

σ +σ

greater the lower the variance of X is relative to that of Y . 

2 Methods for Constructing Estimators 

2.1 Method of Moments 

This method was proposed by the British statistician Karl Pearson in 1894: suppose we have to estimate 
k parameters of a distribution. then we can look at the first k sample moments of the data, 

n

n 
i=1 

1
X̄n = Xi 

n

n 
i=1 

. . . 

1 
X2 

iX2 = n 

n

n 
i=1 

and equate them to the corresponding population moments for a given parameter value, calculated under 
the distribution, 

1 
Xk 

iXk = n 

∞ 

µ1(θ) = Eθ[Xi] ≡ xfX(x; θ)dx 
−∞ 

. . . 
∞ 

µk(θ) = Eθ[Xi
k] ≡ kfX(x θ)dx |x 

−∞ 

(1) 
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Then the method of moments (MoM) estimator θ̂ can be obtained by solving the equations 

µj(θ̂) = Xn
j 

j = 1, . . . , k 

for θ. 

Example 3 Suppose X1, . . . , Xn is an i.i.d. sample from a Poisson distribution with unknown parameter 
λ, i.e. X ∼ P (λ). The distribution has only one unknown parameter, and the first population moment is 
given by 

µ1(λ) = Eλ[X] = λ 

Therefore, the MoM estimator is given by 

n

n 

� 

i=1 

λ̂ = µ1(λ̂) ≡ X̄n =
1 

Xi 

What if we used more moments than necessary to estimate the parameter? - We also know that for 

A double exponential random variable has p.d.f. Example 4 

� 

the Poisson distribution 
Eλ[X2] = Varλ(X) + Eλ[X]2 = λ + λ2 

1 
fY (y) = λe−λ|y−µ| 

2 

so we have to estimate two parameters (λ, µ). We can look up in a statistics book that 

E[Y ] = µ E[Y 2] = Var(Y ) + E[Y ]2 =
2 2+ µ
λ2 

so the method of moments estimator solves 

Ȳ = µ̂

2 2Y 2 = + µ̂ 
λ̂2 

so that, solving for (ˆ µ),λ, ˆ


¯ ˆ
µ̂ = Y , λ = 
√

2
�
Y 2 − (Ȳ )2

�−1/2 

2.2 Maximum Likelihood Estimation 

While the method of moments only tries to match a selected number of moments of the population to 
their sample counterparts, we might alternatively construct an estimator which makes the population 
distribution as a whole match the sample distribution as closely as possible. This is what the maximum 
likelihood estimator of a parameter θ does, which is loosely speaking, the value which ”most likely” would 
have generated the observed sample: 
Suppose we have an i.i.d. sample Y1, . . . , Yn where the p.d.f. of Y is given by fY (y θ), which is known up |
to the parameter θ. The Maximum Likelihood estimator (MLE) is a function θ̂ of the data maximizing 
the joint p.d.f. of the data under θ. 
More specifically, we define the likelihood of the sample as 

n

L(θ) = f(y1, . . . , yn|θ) = f(yi θ)|
i=1 
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Usually it is much easier to maximize the logarithm of the likelihood function, 

n

log f(yi θ)L(θ) = log(L(θ)) |= 
i=1 

Note that since the logarithm is a strictly increasing function, L(θ) and L(θ) will be maximized at the 
same value. 

Proposition 1 The expectation of the log-likelihood under the parameter θ0, 

Eθ0 [L(θ)] = E[log f(Y θ)] |

is maximized at the true parameter θ0. 

Proof: Since the true density over which we take the expectation is f(y θ0), we can show that |
Eθ0 [L(Y |θ)−L(Y |θ0)] ≤ 0 for all values of θ using Jensen’s Inequality and the fact that log(·) is concave 

f(Y |θ)
�� 

θ0) 
Eθ0 [L(Y |θ) − L(Y |θ0)] = Eθ0 [log f(Y |θ) − log f(Y |θ0)] = Eθ0 log 

f(Y |
∞f(y|θ)

�� 
= log 

��
f(y|θ) 

|θ0) |θ0)
≤ log f(y θ0)dy |Eθ0 f(y f(y−∞ 

∞ 

= log f(y θ)dy = log(1) = 0 
−∞ 

|

since f(y|θ) is a density and therefore integrates to 1. Therefore Eθ0 [L(Y |θ0)] ≥ Eθ0 [L(Y |θ)] for all values 
of θ, so that θ0 maximizes the function � 

Since by the Law of Large Numbers, the log likelihood for and i.i.d. sample 

1 
n

n 
i=1 

log f(Yi θ) 
p 

E[log f(Y θ)] | → |

n� 

we’d think that maximizing the log likelihood for a large i.i.d. sample should therefore give us a parameter 
”close” to θ0. 

Example 5 Suppose X ∼ N(µ0, σ0
2), and we want to estimate the parameters µ and σ2 from an i.i.d. 

sample X1, . . . , Xn. The likelihood function is 

1 −
(Xi−µ)2 

L(θ) 2σ2√
2πσ 

= e 

i=1 

It turns out that it’s much easier to maximize the log-likelihood, 

n � 
1 (Xi−µ)2 

−logL(θ) log 2σ2√
2πσ 

= e 

i=1 

�n 21 ( )X − µi √ − 
22σ2πσ 

� 

log 

n

= 
i=1 

n 1 
log(2πσ2) −

2 
= − 

2σ2 
(Xi − µ)2 

i=1 
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In order to find the maximum, we take the derivatives with respect to µ and σ2, and set them equal to 
zero: 

n	 n
1	 1 �

Xi0 = 
�

2(Xi − µ̂) µ̂ =

2σ�2 

i=1 

⇔ 
n 

i=1


Similarly, 

n	 n n
n 2π 1	 1 � 

µ)2 1 � 
Xn)2+ 

�
(Xi − µ̂)2 σ2 =−

2 2πσ�2 
2

�
σ�2

�2 
i=1 

⇔ �
n 

i=1 

(Xi − ˆ = 
n 

i=1 

(Xi − ¯0 = 

Recall that we already showed that this estimator is not unbiased for σ0
2, so in general, Maximum Likelihood 

Estimators need not be unbiased. 

Example 6 Going back to the example with the uniform distribution, suppose X ∼ U [0, θ], and we are 
interested in estimating θ. For the method of moments estimator, you can see that 

θ 
µ1(θ) = Eθ[X] = 

2 

so equating this with the sample mean, we obtain 

θ̂MoM = 2X̄n 

What is the maximum likelihood estimator? Clearly, we wouldn’t pick any θ̂ ≤ max{X1, . . . , Xn} because 

a sample with realizations greater than θ̂ has zero probability under θ̂. Formally, the likelihood is 

L(θ) = 

� �
θ 
1 
�n 

if 0 ≤ Xi ≤ θ for all i = 1, . . . , n 

0 otherwise 

We can see that any value of θ ≤ max{X1, . . . , Xn} can’t be a maximum because L(θ) is zero for all those 
points. Also, for θ ≥ max{X1, . . . , Xn} the likelihood function is strictly decreasing in θ, and therefore, 
it is maximized at 

θ̂MLE = max{X1, . . . , Xn} 
Note that since Xi < θ0 with probability 1, the Maximum Likelihood estimator is also going to be less 
than θ0 with probability one, so it’s not unbiased. More specifically, the p.d.f. of X(n) is given by 

� 
n 

�
1 y 

�n−1 
if 0 ≤ y ≤ θ0fX(n) 

(y) = n[FX(y)]n−1fX(y) =	 θ0 θ0 θ0 

0 otherwise 

so that 
∞�	 � θ0 

�
y 

�n 
n 

E[X(n)] = yfX(n) 
(y)dy = n dy = θ0

θ0 n + 1 −∞ 0 

We could easily construct an unbiased estimator θ̃ = n+1 X(n). n 

2.3 Properties of the MLE 

The following is just a summary of main theoretical results on MLE (won’t do proofs for now) 

• If there is an efficient estimator in the class of consistent estimators, MLE will produce it. 
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•	 Under certain regularity conditions, MLE’s will have an asymptotically normal distribution (this 
comes essentially from an application of the Central Limit Theorem) 

Is Maximum Likelihood always the best thing to do? - not necessarily 

• may be biased 

• often hard to compute 

•	 might be sensitive to incorrect assumptions on underlying distribution 
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