MIT OpenCourseWare
http://ocw.mit.edu

14.30 Introduction to Statistical Methods in Economics

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Problem Set \#3

14.30 - Intro. to Statistical Methods in Economics

Instructor: Konrad Menzel
Due: Tuesday, March 3, 2009

Question One

1. Write down the definition of a cumulative distribution function (CDF). Explain what it means in words, perhaps using an example.
2. Verify whether the following function is a valid CDF. If yes, draw a graph of the corresponding PDF.

Image by MIT OpenCourseWare.
3. Verify that the following function is a valid PDF and draw the corresponding CDF.

Question Two

1. Give a p.d.f. whose c.d.f. is not continuous but is right-continuous.

True/false/uncertain: Always give a brief explanation if the statement is true, or counter-examples and a short explanation of the counter-examples if the statement is false or uncertain.

1. If $P(A \mid B)>P(A)$ and $P(A \mid C)>P(A)$, then $P(A \mid B, C)>P(A)$.
2. A continuous p.d.f. can never take a value greater than 1 .
3. $P(A)=P(A \mid B) P(B)$ means that A and B are independent.

Question Three

(Source: Bain/Engelhardt, Ch. 2, ex. 8)
A nonnegative integer-valued random variable X has a CDF of the form $F(x)=$ $1-(1 / 2)^{x+1}$ for $x=0,1,2, \ldots$ and zero if $x<0$.

1. Find the pdf of X.
2. Find $P[10<X \leq 20]$.
3. Find $P[X$ is even $]$.

Question Four

1. Suppose that a random variable has a PDF that is proportional to x on the interval $[0,1]$. Write down a formula for this PDF. What is the corresponding CDF?
2. Now suppose that the random variable has a CDF that is porportional to x on the interval $[0,1]$. Write down a formula for this CDF. What is the corresponding PDF?

Question Five

Suppose that the joint PDF of X and Y is given by

$$
f_{X, Y}= \begin{cases}k x^{3} y & \text { for } 0<x<y<1 \\ 0 & \text { elsewhere }\end{cases}
$$

1. What is the value of k ?
2. What is the marginal PDF, $f_{X}(x)$, of x ?
3. What is the value of the marginal cdf of $x, F_{X}(x)$, at $x=\frac{1}{2}$?
4. What is the conditional PDF of y (conditional on x, i.e. $f(y \mid x)$)? Are X and Y independent? Explain.
5. What is the probability that $X+Y<1$?

Question Six

(Bain/Engelhardt, Ch. 2, ex. 10)
Let X be a discrete random variable such that $P[X=x]=0$ otherwise. Suppose the CDF is $F(x)=.05 x(1+x)$ at the values $x=1,2,3$, or 4 .

1. Sketch the graph of the CDF.
2. Sketch the graph of the discrete pdf, $f(x)$.
3. Write down the definition of $E[X]$ and find $E[X]$.
