MIT OpenCourseWare
http://ocw.mit.edu

14.30 Introduction to Statistical Methods in Economics

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

14.30 Introduction to Statistical Methods in Economics Appendix to Lecture Notes 10

Konrad Menzel

March 12, 2009

1 Example of Transformation Formula of Integration Limits

$$
f_{x y}= \begin{cases}4 x y & \text { if } 0<x, y<1 \\ 0 & \text { otherwise }\end{cases}
$$

What is the p.d.f. of $Z=X / Y$?

1.1 Approach 1: '2-step' method, too complicated

- find (x, y) such that $x / y \leq 2$.
- integrate $f_{x y}(x, y)$ over those (x, y) 's to obtain c.d.f. $F_{z}(z)$
- differentiate $F_{z}(z)$ to obtain p.d.f. $f_{z}(z)$
\longrightarrow We won't do this, we have an easier approach.

1.2 Approach 2: change-of-variable formula

- problem: $z=u_{1}(x, y)=x / y$ one-dimensional, $u(\cdot)$ can't be one-to-one.
- fix: introduce additional variable $w=u_{2}(x, y)=X Y \longrightarrow$ can invert $\left[\begin{array}{l}w \\ z\end{array}\right]=\left[\begin{array}{l}u_{1}(x, y) \\ u_{2}(x, y)\end{array}\right]$

$$
\begin{aligned}
& S_{1}(w, z)=\sqrt{w z}=\sqrt{x y \cdot \frac{x}{y}}=\sqrt{x^{2}}=X \\
& S_{2}(w, z)=\sqrt{\frac{w}{z}}=\sqrt{\frac{x y}{x / y}}=\sqrt{y^{2}}=Y \quad \quad \text { (Note that x,y are positive with probability 1.) } \\
& \Rightarrow \text { inverse function is }\left[\begin{array}{c}
X \\
Y
\end{array}\right]=\left[\begin{array}{c}
S_{1}(w, z) \\
S_{2}(w, z)
\end{array}\right]=\left[\begin{array}{c}
\sqrt{W Z} \\
\sqrt{W / Z}
\end{array}\right] \\
& \Rightarrow \operatorname{Jacobian~is~} J=\left[\begin{array}{cc}
\frac{\partial S_{1}}{\partial W} & \frac{\partial S_{1}}{\partial Z} \\
\frac{\partial S_{2}}{\partial W} & \frac{\partial S_{2}}{\partial Z}
\end{array}\right]=\left[\begin{array}{cc}
\frac{Z}{2 \sqrt{W Z}} & \frac{W}{2 \sqrt{W Z}} \\
\frac{1 / Z}{2 \sqrt{W / Z}} & -\frac{W / Z^{2}}{2 \sqrt{W / Z}}
\end{array}\right] \\
& \Rightarrow \operatorname{det}(J)=-\frac{Z W / Z^{2}}{4 W}-\frac{W / Z}{4 W}=-\frac{1}{2 Z}
\end{aligned}
$$

- Use formula to get joint p.d.f. of (W, Z).

$$
\begin{aligned}
f_{w z}(w, z) & =f_{x y}\left(s_{1}(w, z), s_{2}(w, z)\right)|\operatorname{det}(J)| \\
& = \begin{cases}4 s_{1}(w, z) s_{2}(w, z) \cdot\left|-\frac{1}{2 z}\right| & \text { if } 0<s_{1}(w, z), s_{2}(w, z)<1 \\
0 & \text { otherwise }\end{cases} \\
& = \begin{cases}\frac{4 W}{2 Z}=2 \frac{W}{Z} & \text { if } w, z>0 \text { and both }\left(^{*}\right)\left\{\begin{array}{l}
W<Z \\
W \\
0
\end{array}\right. \\
\text { otherwise }\end{cases}
\end{aligned}
$$

Condition (*) comes from

$$
\begin{gathered}
1>s_{1}(w, z)=\sqrt{w z} \Rightarrow w<1 / z \\
\text { and } \\
1>s_{2}=\sqrt{w / z} \Rightarrow w<z
\end{gathered}
$$

- How do we obtain $f_{z}(z)=\int_{-\infty}^{\infty} f_{w z}(w, z) d w$?
- $f_{w z}(w, z)$ zero for $W \leq 0$.
- $F_{w z}(w, z)$ zero for $W>\min (Z, 1 / Z)$
- therefore,

$$
\begin{aligned}
f_{z}(z) & =\int_{0}^{\max (0, \min (z, 1 / z))} 2 \frac{W}{Z} d w=\left|\frac{W^{2}}{Z}\right|_{0}^{\max (0, \min (z, 1 / z))} \\
& =\left\{\begin{array}{lll}
z & \text { if } 0<z<1 / z & \Leftrightarrow \\
1 / z^{3} & \text { if } 0<1 / z<z & \Leftrightarrow \quad 1 \leq z<1 \\
0 & \text { if } z<0
\end{array}\right.
\end{aligned}
$$

