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Examples 

Suppose that a random variable is such that on some interval [a, b] on the real axis, the probability of 
X belonging to some subinterval [a�, b�] (where a ≤ a� ≤ b� ≤ b) is proportional to the length of that 
subinterval. 

Definition 1 A random variable X is uniformly distributed on the interval [a, b], a < b, if it has the 
probability density function 

1 if a ≤ x ≤ b 
fX (x) = b−a 

0 otherwise 

In symbols, we then write 
X ∼ U [a, b] 
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Figure 1: p.d.f for a Uniform Random Variable, X ∼ [a, b] 

For example, if X ∼ U [0, 10], then 

� 4 � 4 1 1 
P (3 < X < 4) = f(t)dt = dt = 

10 10 3 3 

What is P (3 ≤ X ≤ 4)? Since the probability that P (X = 3) = 0 = P (X = 4), this is the same as 
P (3 < X < 4). 
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Example 1 Suppose X has p.d.f. 

ax2 if 0 < x < 3 
fX (x) = 

0 otherwise 

What does a have to be? - since P (X ∈ R) = 1, the density has to integrate to 1, so a must be such that 

� 

∞ 
� 3

2

� 

ax3 �3 
27 

1 = fX (t)dt = at dt = = a − 0 = 9a 
3 3

−∞ 0 0 

Therefore, a = 9
1 .


What is P (1 < X < 2)? - let’s calculate the integral


� 2 t2 23 13 7 
P (1 < X < 2) = dt = − = 

9 9 · 3 9 · 3 27 1 

What is P (1 < X)? 
∞ 3 t2 27 − 1 26 

P (1 < X) = fX (t)dt = dt = = 
9 27 27 1 1 

1.1 Mixed Random Variables/Distributions 

Many kinds of real-world data exhibit point masses at some values mainly for two different reasons: 

•	 some outcomes are restricted to certain values mechanically, so a lot of probability mass tends to 
cumulate right at the corners of the range of the random variable, e.g. daily rainfall can possibly 
take any positive real value, but there are many days at which rainfall is zero. 

•	 individuals taking economic decisions may respond to certain institutional rules by positioning 
themselves right at some kind of kinks or discontinuities, e.g. if we look at incomes reported to 
Social Security or the Internal Revenue Service, we observe ”bunching” of individuals at the top 
ends of the tax brackets (since for those individuals, a small increase in income would mean a 
discrete jump in the tax rate). 

The corresponding distributions are, strictly speaking, not continuous, because even though realizations 
can be any real-valued numbers, we can’t define a probability density function as we did in the previous 
section, but we’ll have to deal with the point masses separately. Some of this is going to come up in your 
econometrics classes, but we won’t spend time on this for now and only look at one example. 

Example 2 The following graph is constructed using data from the Current Population Survey (CPS) 
for 1979.1 

For the graph, the authors chose a subpopulation with very low income so that the fraction of the sample 
for whom the minimum wage was binding was relatively high. There are some individuals to the left of 
the 1979 value of the minimum wage presumably corresponding to employment in sectors which are in 
part exempt from minimum wage laws (e.g. farming, youth employment). 

1Figure 3b) on p. 1017 in DiNardo, J., N. Fortin and T. Lemieux. “Labor Market Institutions and the Distribution of 
Wages, 1973-1992: A Semiparametric Approach.” Econometrica 64, no. 5 (1996): 1001-1044. 
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Figure 2: Log Wages for Female High-School    
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Dropouts in 1979

The Cumulative Distribution Function (c.d.f.) 

Definition 2 The cumulative distribution function (c.d.f.) FX of a random variable X is defined for 
each real number as 

FX (x) = P (X ≤ x) 

Note that this definition is the same for discrete, continuous or mixed random variables. In particular, 
since we allow for X to be discrete, note that P (X ≤ x) may be different from P (X < x), so it’s important 
to distinguish the corresponding events. In the definition of the c.d.f., we’ll always use X ”less or equal 
to” x. 
Since the c.d.f. is a probability, it inherits all the properties of probability functions, in particular 

Property 1 The c.d.f. only takes values between 0 and 1 

0 ≤ FX (x) ≤ 1 for all x ∈ R 

Also, since for x1 < x2, the event X ≤ x1 is included in X ≤ x2, we have 

Property 2 FX is nondecreasing in x, i.e. 

FX (x1) ≤ FX (x2) for x1 < x2 

If we let x → −∞, the event (X ≤ x) becomes ”close” (here I’m very sloppy about what that means) 
to the impossible event in terms of its probability of occurring, whereas if x → ∞, the event (X ≤ x) 
becomes almost certain, so that we have 

Property 3 

lim F (x) = 0 
x→−∞ 

lim F (x) = 1 
x→∞ 
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Note that a c.d.f. doesn’t have to be continuous: if we define the left limit 

F (x −) = lim F (x − h) 
h>0,h→0 

and the right limit 
F (x +) = lim F (x + h) 

h>0,h→0 

Recall that in order to be continuous at x, F (x) must satisfy F (x−) = F (x+). This need not be true in 
general, as the following example shows: 

Example 3 Consider again the experiment of rolling a die, where the random variable X corresponds 
to the number we rolled. Then the c.d.f. of X is given by 

⎧ 

0 if x < 1
⎪ 

⎪ 

⎪ 1 
⎪ if 1 ≤ x < 2
⎨ 6 

FX (x) = · · · · · · 
⎪ 5 
⎪ if 5 ≤ x < 6
⎪ 6⎪ 

⎩ 

1 if x ≥ 6 

which has discontinuous jumps at the the values 1, 2, . . . , 6. 

0 1 2 3 4 5 6 ---

F(x) 

F(x) 
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Figure 3: c.d.f. of a   
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die roll

However, by a general result from real analysis, any monotone function (hence the c.d.f. FX in 
particular) can only have countably many points of discontinuity. 

Furthermore, we always have 

Property 4 Any c.d.f. is right-continuous, i.e. 

F (x) = F (x +)


We can now use our knowledge about probabilities to show some more properties of c.d.f.s


Proposition 1 For any given x, 
P (X > x) = 1 − FX (x) 
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Proof: From properties of probabilities, 

P (X > x) = 1 − P (X ≤ x) = 1 − FX (x) 

Similarly, 

Proposition 2 For two real numbers x1 < x2, 

P (x1 < X ≤ x2) = FX (x2) − FX (x1) 

Proposition 3 For any x, 
P (X < x) = F (x −) 

Proposition 4 For any x, 
P (X = x) = F (x +) − F (x −) 

This last result means in particular that for continuous variables, P (X = x) = 0 for all values of x. 

Example 4 Let’s check whether the function GX (x) in the following graph is a c.d.f. The function is 

1 

1 2 3 4 5 6 7 

3 
4 

1 
2 

1 
4 

G (x) 

x 

between 0 and 1, monotonically increasing, and right-continuous. Let’s     
Image by MIT OpenCourseWare.

apply the last four propositions 
to this example (just reading numbers off the graph): 

3
4 

1
4 • P (X > 4) = 1 − F (4) = 1 − = 

• P (3 < X ≤ 4) = 34 − 1
4 = 12 

1
2 • P (X < 4) = F (4−) = 

3
4

1
2 = 14 • P (X = 4) = F (4+) − F (4−) −= 

Example 5 Unlike for continuous random variables, where we have a one-line formula linking the p.d.f. 
and the c.d.f., in discrete case, have to use the results on deriving probabilities from c.d.f.s we just 
discussed. Let’s look at the relationship in another graphical example 
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Figure 4: c.d.f. and p.d.f. for a discrete   
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random variable

2.1 p.d.f. and c.d.f for Continuous Random Variables 

If X has a continuous distribution with p.d.f. f(x) and F (x) (I’ll drop the X subscript from now on 
wherever there are no ambiguities), then 

x 

F (x) = P (X ≤ x) = f(t)dt 
−∞ 

From the fundamental theorem of calculus, we can in this case write the relationship between c.d.f. and 
p.d.f. as 

d 
F �(x) = F (x) = f(x)

dx 

Example 6 Let 
0 if x < 0 

F (x) = x if x ≥ 01+x 

Is F (x) a c.d.f.? - let’s check basic properties: 
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• limx→−∞ F (x) = 0 

• limx→∞ F (x) = 1 

• F (·) is nondecreasing (can check derivative below) 

What is the p.d.f. f(x)? 
0 if x < 0 

f(x) = F �(x) = 1 otherwise (1+x)2 

Is f(x) a p.d.f.? - well, we’ve essentially already shown that F (x) is a c.d.f. We can see right away that 

f(x) ≥ 0 for all x 

and also, 
� 

∞ 

f(t)dt = lim F (x) − lim F (x) = 1 − 0 = 0 
x→∞ x→−∞ 

−∞ 

Example 7 If X ∼ U [0, 1], then its c.d.f. is 

⎧ 

� x ⎨ 
0 if x < 0 

FX (x) = fX (t)dt = x if 0 ≤ x < 1 
⎩

−∞ 1 if x ≥ 1 

a 

1 

x 

xb 
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Figure 5: p.d.f. and c.d.f. for   
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X ∼ U [a, b]
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3 Joint Distributions of 2 Random Variables X, Y 

In many situations, we are interested not only in a single random variable, but may care about relationship 
between two or more variables, e.g. whether the outcome of some process affects the outcome of another. 
E.g. we could look at 

•	 IQs of identical twins - i.e. X would be one kid’s IQ, and Y that of her/his sibling 

•	 educational attainment X and income Y : while we could look at the distributions of income or 
education separately, we can also plot both variables together for observations from a data set. And 
in the graph it looks like there is in fact a non-trivial relationship between the variables. 

In
co

m
e 

Years of schooling 

Figure 6: Schooling   
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and Income

•	 relapse times: since it is often not possible to remove a cancer completely by surgery, we may want 
to evaluate the effectiveness of a medical procedure, by looking at how long it takes until either (a) 
a new operation becomes necessary (X), or (b) the patient dies (Y ). While we are interested in 
either outcome, both outcomes are interdependent: if the patient dies before a new operation, we 
simply don’t observe when he would have had to undergo surgery otherwise. 

In this part of the class, we will consider the properties of two (or more) random variables simultane
ously, including their relationship. We will also introduce concepts analogous to ”independence” and 
”conditional probabilities” of events. 

We let (X, Y ) be a pair random variables that (jointly) takes values (x, y), and either variable can be 
continuous, discrete, or mixed. 

3.1 Discrete Random Variables 

In the discrete case, the joint p.d.f. is given by 

fXY (x, y) = P (X = x, Y = y) 

for any (x, y) ∈ R2 . If {(x1, y1), . . . , (xn, yn)} contains all possible values of (X, Y ), then 

n 

fXY (xi, yi) = 1 
i=1 
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For any subset A ⊂ R2 , 

P ((X, Y ) ∈ A) = fXY (x, y) 
(x,y)∈A 

Example 8 In a supermarket, let X be the number of people in the regular checkout line, and Y the 
number of people in the express line. Then the joint p.d.f. of X and Y could look like this: A table of this 

fXY 

0 1 
Y 
2 3 4 Total 

X 
0 
1 
2 
3 

0.1 
0.05 
0 
0 

0.15 

0.05 
0.2 
0 
0 

0.25 

0.05 
0.2 
0.1 
0 

0.35 

0 
0.05 
0.1 
0 

0.15 

0 
0 

0.05 
0.05 
0.1 

0.2 
0.5 
0.25 
0.05 
1 

form, summarizing the cell-probabilities from the joint p.d.f. of (X, Y ), and the marginal probabilities on 
the sides, is also called a contingency table. As argued before, the probabilities in the table should add up 
to one, and they do. 
We can see from the entries that there seems to be some relationship between the two variables: when the 
number of individuals at the regular checkout is high, then the number of persons in the express line also 
tends to be high. 
We can also calculate probabilities for different events based on the p.d.f. as given in the table: 

P (X = 2) = 0 + 0 + 0.1 + 0.1 + 0.05 = 0.25 
3 4 

P (X ≥ 2, Y ≥ 2) = fXY (x, y) = 0.1 + 0.1 + 0.05 + 0 + 0 + 0.05 = 0.3 
x=2 y=2 

P (|X − Y | ≤ 1) = P (X = Y ) + P (|X − Y | = 1) 

= 0.1 + 0.2 + 0.1 + 0 + 0.05 + 0.05 + 0.2 + 0 + 0.1 + 0 + 0.05 = 0.85 
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