MIT OpenCourseWare
http://ocw.mit.edu

14.30 Introduction to Statistical Methods in Economics

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Problem Set \#4

14.30 - Intro. to Statistical Methods in Economics

Instructor: Konrad Menzel

Due: Tuesday, March 17, 2009

Question One

Suppose that the PDF of X is as follows:

$$
f(x)=\left\{\begin{array}{ll}
e^{-x} & \text { for } x>0 \\
0 & \text { for } x \leq 0
\end{array} .\right.
$$

1. Determine the PDF for $Y=X^{\frac{1}{2}}$.
2. Determine the PDF for $W=X^{\frac{1}{k}}$ for $k \in \mathbb{N}$.

Question Two

Suppose that the PDF of a random variable X is as follows:

$$
f(x)= \begin{cases}\frac{2}{25} x & \text { for } 0<x<5 \\ 0 & \text { otherwise }\end{cases}
$$

Also, suppose that $Y \equiv X(5-X)$. Determine the PDF and CDF of Y. You can solve this in two ways. First, you can compute $f_{Y}(y)$ using the formula given in class:

$$
f_{Y}(y)=f_{X}\left(g^{-1}(y)\right)\left|\frac{d}{d y} g^{-1}(y)\right|,
$$

taking care that $g(x)$ is piece-wise monotonic. Second, you can solve this by finding $F_{Y}(y)=P[Y \leq y]$ directly, as we did in recitation. You will receive extra-credit if you can do it both ways.

Question Three

(Bain/Engelhardt, p. 226)
(6 points) Let X be a random variable that is uniformly distributed on $[0,1]$ (i.e. $f(x)=1$ on that interval and zero elsewhere). Use two techniques from class (" $2-$ step"/CDF technique and the transformation method) to determine the PDF of each of the following:

1. $Y=X^{\frac{1}{4}}$.
2. $W=e^{-X}$.
3. $Z=1-e^{-X}$.

Question Four

(Bain/Engelhardt p. 227)
If $X \sim \operatorname{Binomial}(n, p)$, then find the pdf of $Y=n-X$.

Question Five

(Bain/Engelhardt p. 227)
Let X and Y have joint PDF $f(x, y)=4 e^{-2(x+y)}$ for $0<x<\infty$ and $0<y<\infty$, and zero otherwise.

1. Find the CDF of $W=X+Y$.
2. Find the joint pdf of $U=\frac{X}{Y}$ and $V=X$.
3. Find the marginal pdf of U.
