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Lecture Notes 5 
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February 19, 2009 

We distinguish 2 different types of random variables: discrete and continuous. 

Discrete Random Variables 

Definition 1 A random variable X has a discrete distribution if X can take on only a finite (or countably 
infinite) number of values (x1, x2, . . .). 

Definition 2 If random variable X has a discrete distribution, the probability density function (p.d.f.) 
of X is defined as the function 

fX (x) = P (X = x) 

If {x1, x2, . . .} is the set of all possible values of X, then for any x /∈ {x1, x2, . . .}, fX (x) = 0. Also 

∞ 

fX (xi) = 1 
i=1 

The probability that X ∈ A for A ⊂ R is 

P (X ∈ A) = fX (xi) 
xi∈A 

Example 1 If X is the number we rolled with a die, all integers 1, 2, . . . , 6 are equally likely. More 
generally, we can define the discrete uniform distribution over the numbers x1, x2, . . . , xk by its p.d.f. 

1 

fX (x) = k if x ∈ {x1, x2, . . . , xk} 
0 otherwise 

This corresponds to the simple probabilities for an experiment with sample space S = {x1, x2, . . . , xk}. 

Example 2 Suppose we toss 5 fair coins independently from another and define a random variable X 
which is equal to the observed number of heads. Then by our counting rules, n(S) = 25 = 32, and 

5 
n(”k heads”) = , using the rule on combinations. Therefore 

k 

5 1 1 5 1 5 
P (X = 0) = = , P (X = 1) = = 

0 32 32 1 32 32
, 

5 1 10 5 1 10 
P (X = 2) = = , P (X = 3) = = 

2 32 32 3 32 32
, 

5 1 5 5 1 1 
P (X = 4) = = , and P (X = 5) = = . 

4 32 32 5 32 32 
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1 
K 

ρ(X = X) 

2 3 --- K-1 K X1 

Note that these probabilities sum to 1. 

P(X = X) 

10 
32 

5 
32 

1 
32 

0 1 2 3 4 S X 

Note that in the die roll example, every single outcome corresponded to exactly one value of the 
random variable. In contrast for the five coin tosses there was a big difference in the number of outcomes 
corresponding to X = 2 compared to X = 0, say. So mapping outcomes into realizations of a random 
variable may lead to highly skewed distributions even though the underlying outcomes of the random 
experiment may all be equally likely. 

1.1 The Binomial Distribution 

To generalize the preceding example, suppose we look at a sequence of n independent and identical trials, 
each of which can result in either a ”success” or a ”failure” (not necessarily with equal probability), and 
we are interested in the total number X of successes. 

Example 3 Suppose we sample 100 pieces from a batch of car parts at the producing plant for quality 
control. A piece passing the quality checks would constitute a ”success”, a piece falling short of one or 
more of the criteria would be a ”failure”. We are interested in the distribution of failures as a function 
of the total share of defective parts in the batch in order to infer from the sample whether we have good 
reason to believe that no more than, say, 1% of the pieces don’t meet the standards. 

Suppose the probability of a success equals p, and the probability of a failure is therefore q = 1 − p. 
Since the trials are independent by assumption, the probability of any given sequence of x successes and 
n − x failures in fixed order is 

p x(1 − p)n−x 
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However, since we are only interested in the number X of successes, we have to take into account that 
n 

there are different sequences with x successes. Therefore, the probability of x successes is 
x 

P (X = x) = 
n

p x(1 − p)n−x 

x 

Definition 3 A random variable X with probability density function 
⎧ 

⎨ 
n 

px(1 − p)n−x if x ∈ {1, 2, . . . , n}
fX (x) = P (X = x) = x 

⎩ 

0 otherwise 

is said to follow a binomial distribution with parameters p and n, written as 

X ∼ B(n, p) 

You should notice that previously, we derived the probability distribution for every random experiment 
separately, writing down the number of possible outcomes, outcomes in each event etc. The binomial 
distribution serves as a model for a whole range of random experiments. For any given example which 
falls into this category, we can just look up the probabilities for a given set of parameters (n, p). 

Example 4 In order to make some money off your classmates, you obtained a bent 25 cent coin that 
comes up heads with a probability of pL = 5

4 . Unfortunately, that coin got mixed up with your regular 
small coins, and only after you inserted 8 out of 9 quarters into the laundromat you notice your mistake. 
You hastily toss the coin 10 times, and it comes up heads for a total of 8 times. Would it be a good idea to 
continue to rip off your friends with the old coin trick or are you now stuck with a regular (fair) quarter 
with pF = 12 ? I.e. what is P (A|B) for A =”remaining coin is bent” and B =”8 heads out of 10”? 
If the coin is fair, 

P (B|AC ) = 
10 

pF 
8 (1 − pF )

10−8 =
10 1 

8 8 210 

If it is bent, 

P (B|A) = 
10 

pL
8 (1 − pL)10−8 = 

10 48 · 12 

8 8 510 

Now let’s see what Bayes theorem has to say: 

10 48 ·12 1 

P (B|A)P (A) 8 510 9 48 

P (A|B) = = � � � � = 
48 

510 
≈ 46.21% 

8P (B|A)P (A) + P (B|AC )P (AC ) 10 48·12 1 + 
10 1 8 510 + 210 

8 510 9 8 210 9 

Therefore, it is more likely that the coin you are left with is in fact a regular quarter - which doesn’t mean 
that in total, the probability of heads is still 

4 1 
P (H|B) = · 46.21% + · 53.79% ≈ 63.86% 

5 2 

However a better idea would of course be to do a few more tosses. If you can repeat the experiment 
arbitrarily often, you will eventually be able to distinguish the two types of coins with an arbitrary degree 
of certainty. As an aside, you can see this exercise as a very basic example for a hypothesis test. 
Say you got another 8 heads out of another 10 trials (we’ll call this event C), leaving the share of heads 
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at the same value as before. Then, doing the same steps as before, this time based on the first posterior 
P (H|B) rather than the prior P (B), the conditional probability would be 

10 48 ·12 

510 · 46.21% 
8 46.21% 

P (H|B ∩ C) = � � � � = 
510 ≈ 85.51% 

10 48·12 10 1 46.21% + 53.79% · 48210 

8 510 · 46.21% + 
8 210 · 53.79% 

Alternatively, if we just aggregate the two series of trials into 16 heads out of 20 trials, we get 

� � 

20 416 

16 520 

P (A|B�) = � � � � ≈ 85.51% 
20 20 416 8+ 
16 520 16 220 

so that it doesn’t matter whether we update simultaneously or sequentially. This is more generally a 
desirable property of Bayesian updating: the final result only depends on the overall information we are 
using, not the order in which we update. 

Continuous Random Variables 

Many types of data are results from measurements of some kind: weights, lengths, incomes etc., which 
can - at least conceptually - take any value in some interval (sometimes all) of the real numbers. In 
this case, the definition of a probability density function for discrete random variables is not practical, 
because (a) the number of possible outcomes is uncountable, so we can’t just add up probabilities over 
single values, and (b) the probability of any particular value on the continuum typically has to be zero. 
This is why we have to deal with this type of random variables separately from the discrete case. 

Definition 4 A random variable X has a continuous distribution if X can take on any values in some 
interval - bounded or unbounded - of the real line. 

For discrete random variables, it was relatively straightforward to define a probability density function, 
since there was only a finite number of values. A continuous random variable can take more than count
ably many values, and therefore the derivation becomes a little bit more involved. 
The idea goes as follows: we can ”discretize” the distribution by putting the possible values the random 
variable can take into ”bins”, i.e. instead of looking at the probabilities P (X = x), we’ll look at proba
bilities for intervals, i.e. P (x1 ≤ X ≤ x2). The graphical representation of this is a histogram: we fix a 
set of points x0 < x1 < . . . < xn on the real line and calculate the probabilities for X falling into each 
”bin”, i.e. interval between two subsequent points, so that P (xi−1 ≤ X ≤ xi). Then for values in the 
interval [x0, xn], we can define a function 

⎧ 

⎪ 

P (x0≤X≤x1) if x ∈ [x0, x1) 
⎪ 

x1−x0 
⎪ 

⎪ . 
⎪ 

⎪ 
. 

⎪ . 
⎨ 

hn(x) = 
P (xi−1≤X≤xi) if x ∈ [xi−1, xi)xi−xi−1 

⎪ 

⎪ 

⎪ 
. 

⎪ . 
⎪ . 
⎪ 

⎪ 

⎩ P (xn−1≤X≤xn) if x ∈ [xn−1, xn)
xn−xn−1 
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Dividing by the length of the interval [xi−1, xi) makes sure that the area under the graph for a given 
interval equals the probability of the random variable X taking a value in that interval, i.e. we can 
calculate 

k k � xi 
� xk 

P (xj ≤ X ≤ xk) = P (xi−1 ≤ X ≤ xi) = hn(t)dt = hn(t)dt for xj < xk 

i=j+1 i=j+1 xi−1 xj 
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Figure 1: Histograms of the same Distribution for 10 and 30 Bins, respectively 
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Figure 2: Histogram with 60 Bins and Continuous Density 

This is not completely satisfying yet, since this only allows us to calculate the probability of X falling 
between any two of the grid points from x0 < x1 < . . . < xn, but not e.g. of a subinterval of, say, [xj , xk]. 
We can address this by making the grid of points x1, x2, . . . finer, and therefore the intervals narrower. 
If we shrink the distance between neighboring points xi−1, xi to an arbitrarily small ”dx”, we’ll have a 
function h∞(x) for which the probability that X lies between any two points a and b can be expressed 
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as the integral of h∞(x) from a to b. This limit is called the probability density function for a continuous 
random variable: 

Definition 5 If random variable X has a continuous distribution, the probability density function 
(p.d.f.) of X is defined a positive function fX (x) such that for any interval A ⊂ R 

P (X ∈ A) = fX (t)dt 
A 

X 

F(x) 

P(a x b) 

a b 

Figure 3: P.D.F. of a Continuous Random  

Image by MIT OpenCourseWare.

Variable

From the axioms for a probability function, we can see that any continuous p.d.f. must satisfy 

fX (x) ≥ 0 ∀x ∈ R 

and 
� ∞ 

fX (x) = 1 
−∞ 

Hence, if we want to know P (X ∈ A) for A = [a, b] ⊂ R, we can compute 

� b 

P (X ∈ [a, b]) = P (a ≤ X ≤ b) = f(t)dt 
a 

Remark 1 Note that for any x ∈ R, 
P (X = x) = 0 

if X has a continuous distribution. 

This may seem a little counterintuitive in part also because we use continuous distributions to ap
proximate things which are in fact discrete (e.g. income or time unemployed). So far we haven’t seen 
any examples of continuous random variables in any of the probabilities we computed. 

Examples 

Suppose that a random variable is such that on some interval [a, b] on the real axis, the probability of 
X belonging to some subinterval [a�, b�] (where a ≤ a� ≤ b� ≤ b) is proportional to the length of that 
subinterval. 
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fX (x) = b−a 
0 otherwise 

F(x) 

x 

y 

a 

1 

b-a 

b 

Figure 4: p.d.f for a Uniform Random Variable, X ∼ [a, b] 

� 4 � 4
 1 1


10 10
3 3


ax2 if 0 < x < 3

0 otherwise 

a − 0 = 9a 

Definition 6 A random variable X is uniformly distributed on the interval [a, b], a < b, if it has the 
probability density function 

if a ≤ x ≤ b 

In symbols, we then write 
X ∼ U [a, b] 

For example, if X ∼ U [0, 10], then 

P (3 < X < 4) = f(t)dt = dt = 

What is P (3 ≤ X ≤ 4)? Since the probability that P (X = 3) = 0 = P (X = 4), this is the same as 
P (3 < X < 4). 

Example 5 Suppose X has p.d.f. 

fX (x) = 

What does a have to be? - since P (X ∈ R) = 1, the density has to integrate to 1, so a must be such that 

� ∞ � 3 � 

3 �3 

1 = fX (t)dt = at2dt = 
ax 27 

= 
3 3
−∞ 0 0 

Therefore, a = 9
1 .


What is P (1 < X < 2)? - let’s calculate the integral


� 2
 t2 23 13 7

P (1 < X < 2) = dt = − = 

9 9 · 3 9 · 3 27
1


What is P (1 < X)? 
∞ 3 t2 27 − 1 26


P (1 < X) = fX (t)dt = dt = = 
9 27 27
1 1
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