
Lecture 9 

Uniformly Most Powerful Tests 

1 Some more on bootstrap in testing 

Example. Assume you have a random sample from some unknown distribution X = (X1, ..., Xn) with four 

˝nite moments. Denote µ = EXi, σ
2 = V ar(Xi). Let h(µ, σ2) be a twice-continuously-di˙erentiable function 

of both arguments with a full rank derivative. Assume we wish to test the hypothesis H0 : h(µ, σ2) = 0 

against H1 : h(µ, σ2) ̸= 0. 

One way to approach this problem is to de˝ne a new parameter γ = h(µ, σ2) for which we have a 

consistent estimate γ̂ X, s2). We can even prove asymptotic gaussianity via the delta-method: = h( ¯ 

√ 
n(γ̂ − γ) ⇒ N(0, (∇h) ′ V ∇h), 

∂h(µ,σ2) ∂h(µ,σ2) where 
√ 
n(X̄ − µ, s2 − σ2) ′ ⇒ N(0, V ) and ∇h = ( , ) ′ . So, in principle, one may get a natural ∂µ ∂σ2 

estimate of the asymptotic variance of γ̂ and construct a regular t-statistic to conduct a test. Alternatively 

one can employ a non-parametric bootstrap in the way we discussed in the previous lecture by approximating 
∗ X∗ an unknown, ˝nite-sample distribution of a statistic z = 

√ 
n(γ̂ − 0) with z = 

√
n(h( ¯ , s ∗2) − γ̂). Let us ∫ ∗ denote all parameters and statistics related to the bootstraped distribution with stars, that is µ = xdF̂ = 

¯ E∗X∗ = X, etc. Several comments are needed: i 

• Notice a �re-centering� of the null hypothesis. We approximate the unknown distribution of Xi with 

empirical distribution function F̂  . The size is de˝ned under the null, so, we assume that the unknown 

distribution of Xi is such that H0 : h(µ, σ2) = 0. However we know for sure that this null does not hold 
∗ 1 ¯ ¯ for the empirical distribution F̂  as the mean for it, µ = X, and the variance is σ∗2 = 

∑ 
(Xi − X)2 

n i 
2 (almost s ; the di˙erence is of order Op(1/n) and will be ignored here as too `smallish' to care). From 

this perspective the true value of parameter γ for the empirical distribution is γ̂ (almost). So, for the 

bootstrapped samples we should be testing the true null hypothesis H0 : h(µ ∗, σ∗2) = γ̂. 

• The justi˝cation of bootstrap validity here is based on the validity of asymptotic approximation, both 

for the statistic itself and for its bootstrapped version: 

√ 
n(γ̂ ∗ − γ̂) ⇒ N(0, (∇h ∗ ) ′ V ∗ ∇h ∗ ), 
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√ ∗ ∗ ∗ ∂h(µ ,σ ∗2) ∂h(µ ,σ ∗2) where n(X̄ ∗ − µ , s ∗2 − σ∗2) ′ ⇒ N(0, V ∗) and ∇h∗ = ( , ) ′ . And noticing that ∂µ ∂σ2

V ∗ = V + op(1) and ∇h∗ = ∇h + op(1). 

• In the vast majority of cases the justi˝cation for the bootstrap comes from the validity of some asymp-

totic approximation to the test statistic, and so the asymptotic method can be used. There are only a 

couple of cases I know of when we do not know if a statistic has an asymptotic limit and, if so, what 

it is, but the bootstrap magically works. But there is a large number of cases (weak identi˝cation, 

moment inequality, boundary problem, post-selection inferences) when there are di°culties in carrying 

out the asymptotic approach, and when the bootstrap does not work either. 

• Another thing the bootstrap is implicitly doing here is bias correction. Remember our discussion about 

bias of the order O(1/n) present in estimate γ̂? 

• In the example above by using the bootstrap we avoided calculating the standard error for γ̂. The 

question arises, if we are willing to calculate standard errors, would still using the bootstrap have 

any bene˝ts? The answer is yes. Imagine we construct a natural consistent estimator V̂ for V and 

considered t-statistic: 
√ γ̂ − 0

t = n √ , 
(∇ĥ) ′ V̂ ∇ĥ 

¯ where ∇ĥ is the corresponding derivative evaluated at X, s2 . We know that under the null t ⇒ N(0, 1). 

The bootstrapped statistic t ∗ is constructed in an analogous way (using re-centering) and t ∗ ⇒ N(0, 1). 

Thus the distribution of t is close to the distribution of t ∗ in large samples. However, there are results 

suggesting that the distance between the distributions of t and t ∗ are asymptotically smaller than the 

distance between the distribution of t and the standard normal cdf. That is, the bootstrap provides 

better approximation, or so called second-order re˝nement. Statements like this one are based on 

Edgeworth's expansion, which in general is quite complicated to arrive at and we will not derive it. 

But it is a statement of the following sort: 

1 1 
P {t ≤ x} = Φ(x) + √ ϕ(x, F ) + O( ), 

n n 

here ϕ(x, F ) will depend on F only through several of the ˝rst moments of this distribution (I think 

in our case on ˝rst 6). Similarly, 

1 1 ∗ P ∗ {t ≤ x} = Φ(x) + √ ϕ(x, F̂ ) + Op( ).
n n 

One may show that ϕ(x, F̂ ) − ϕ(x, F ) = Op( √1 ) (CLT and delta-method). Then 
n 

1 ∗ P {t ≤ x} − P ∗ {t ≤ x} = Op( ),
n 

while 
1 

P {t ≤ x} − Φ(x) = Op( √ ). 
n 
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2 Uniformly Most Powerful Test 

Let Θ = Θ0 ∪ Θ1 be a parameter space. Consider a parametric family {f(x|θ), θ ∈ Θ}. Suppose we want to 
test the null hypothesis, H0, that θ ∈ Θ0 against the alternative, Ha, that θ ∈ Θ1. Let C be some critical 

set. Then the probability that the null hypothesis is rejected is given by β(θ) = Pθ{X ∈/ C}. Recall that the 
test based on C is of level α if α ≥ supθ∈Θ0 

β(θ). The restriction of β(·) on Θ1 is known as the power of the 
′ ′ test. Let C be another critical set. Denote the power of the test based on C by β ′ (θ). Suppose that both 

′ tests are of level α. Then the test based on C is more powerful than the test based on C if β(θ) ≥ β ′ (θ) for 

all θ ∈ Θ1. Any test which is more powerful than any other test in some class G will be called uniformly the 

most powerful test in the class G (UMP test). 

As follows from the theorem below, the UMP test exists if both the null and the alternative are simple. 

Theorem 1 (Neyman-Pearson Lemma). Let f(x|θ) with Θ = {θ0, θ1} be some parametric family. Suppose we 

want to test the null hypothesis, H0, that θ = θ0 against the alternative hypothesis, Ha, that θ = θ1. Assume 

that some critical set C satis˝es (1) x ∈ C if kf(x|θ0) > f(x|θ1) and (2) x ∈/ C if kf(x|θ0) < f(x|θ1) where 
k ≥ 0 is chosen so that α = Pθ0 (X ∈/ C). Then the test based on C is the UMP among all tests of level α. 

In addition, any UMP test of level α satis˝es (1) and (2). 

Proof. Denote ϕ(x) = I(x ∈/ C), i.e. ϕ(x) = 1 if x ∈/ C and 0 otherwise. Thus, ϕ(x) denotes the probability 

that the test based on C rejects the null hypothesis upon observing data of value x. Consider any other test 

of level α. Let ϕ̃(x) denote the probability that this test rejects the null hypothesis upon observing data 

value x. Since this test is of level α, ∫ 
˜ ˜ β(θ0) = ϕ(x)f(x|θ0)dx ≤ α, 

where β̃(θ) denotes the probability that this test rejects the null hypothesis when the true parameter value 

is θ. 

Note that 

(ϕ(x) − ϕ̃(x))(f(x|θ1) − kf(x|θ0)) ≥ 0 

for any x. Indeed, if f(x|θ1) − kf(x|θ0) ≥ 0, then ϕ(x) = 1 and ϕ(x) − ϕ̃(x) ≥ 0. If f(x|θ1) − kf(x|θ0) < 0, 

then ϕ(x) = 0 and ϕ(x) − ϕ̃(x) ≤ 0. So, ∫ 
0 ≤ (ϕ(x) − ϕ̃(x))(f(x|θ1) − kf(x|θ0))dx = β(θ1) − β̃(θ1) − k(β(θ0) − β̃(θ0)), 

where β(θ) denotes the probability that the test based on C rejects the null hypothesis when the true 

parameter value is θ. Therefore, 

β(θ1) − β̃(θ1) ≥ k(β(θ0) − β̃(θ0)) ≥ k(α − α) = 0, 

since β̃(θ0) ≤ α and β(θ0) = α. So the test based on C is more powerful than any other test of level α. So 

it is the UMP which proves the ˝rst statement of the theorem. 
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If ϕ̃(·) is also a UMP among all tests of level α, then β̃(θ1) = β(θ1). So, k(α − β̃(θ0)) ≤ 0. Therefore 

β̃(θ0) ≥ α. On the other hand, β̃(θ0) ≤ α, since this test is of level α. We conclude that β̃(θ0) = α. It 

follows that ∫ 
(ϕ(x) − ϕ̃(x))(f(x|θ1) − kf(x|θ0))dx = 0. 

Since the integrand is nonnegative for all x, 

(ϕ(x) − ϕ̃(x))(f(x|θ1) − kf(x|θ0)) = 0. 

Thus, ϕ̃(x) = ϕ(x) whenever f(x|θ1) − kf(x|θ0) ̸= 0. So, ϕ̃(·) also satis˝es conditions (1) and (2). 

Recall from the proof of the factorization theorem in lecture 4 that if T (X) is a su°cient statistic, then 

f(x|θ) = g(T (x)|θ)h(x) where g(·) denotes pdf of T (X). So, in terms of the pdf of su°cient statistics, 

the critical set C of the UMP test satis˝es (1) x ∈ C if kg(T (x)|θ0) > g(T (x)|θ1) and (2) x ∈/ C if 

kg(T (x)|θ0) < g(T (x)|θ1). 

Example Let X1, ..., Xn be a random sample from the N(µ, σ2) distribution with known σ2 . Suppose 

we want to test the null hypothesis, H0, that µ = θ0 against the alternative hypothesis, Ha, that µ = θ1. 

Without loss of generality we can assume that θ0 > θ1. We have already seen that the su°cient statistic in ∑n 
this example is given by Xn = Xi/n. We know that Xn ∼ N(µ, σ2/n). i=1 So, 

g(t|θ) = C exp{−(n/(2σ2))(t − θ)2}. 

From the Neyman-Pearson lemma, the UMP test among all tests of level α accepts the null hypothesis if 

and only if 

kg(Xn|θ0) > g(Xn|θ1) 

or, equivalently, 

k exp{(n/(σ2))Xn(θ0 − θ1) − (n/(2σ2))(θ0
2 − θ1

2)} > 1. 

Since θ0 > θ1, the test accepts the null hypothesis if and only if Xn > k̃ where k̃ is such that Pθ0 (X ≤ k̃) = α. 

So, k̃ = θ0 + σzα/ 
√ 
n where zα denotes an α-quantile of the standard normal distribution. 

3 UMP tests with composite hypotheses ∫ 
The idea of the Neyman-Pearson lemma is to consider an optimization problem ϕ(x)f(x|θ1)dx → max ∫ 
subject to ϕ(x)f(x|θ0)dx ≤ α and 0 ≤ ϕ ≤ 1. The solution to this problem gives the UMP test of level α. 

This problem looks like maximization of utility given some budget constraint. We want to choose the most 

valuable items with the lowest price. In some special cases we can extend this idea to the case of complex 

hypotheses. Suppose we want to test the null hypothesis, H0, that θ ≤ θ0 against the alternative hypothesis, 

Ha, that θ > θ0. Then the UMP test exists if f(x|θ) satis˝es the monotone likelihood ratio property. 

De˝nition 2. A family f(x|θ) with θ ∈ R satis˝es the monotone likelihood ratio if there exists some function 
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T (x) such that for any θ < θ ′ , Pθ ′ (x)/Pθ(x) depends on x only through T (x) and, moreover, Pθ ′ (x)/Pθ(x) 

is a nondecreasing function of T (x). 

Theorem 3. Let f(x|θ) with θ ∈ R be some parametric family that satis˝es the monotone likelihood ratio 

with function T (x). Suppose we want to test the null hypothesis, H0, that θ ≥ θ0 against the alternative 

hypothesis, Ha, that θ < θ0. Then a UMP test of level α exists. It is given by ϕ(X) = 1 if T (X) > C, 

ϕ(X) = γ if T (X) = C, and 0 otherwise for some constants c and γ such that Eθ0 [ϕ(X)] = α. In addition, 

the power of this test β(θ) = Eθ[ϕ(X)] for θ > θ0 is strictly decreasing in θ. 

Proof. Choose a simple alternative θ1 < θ0. By the Neyman-Pearson lemma, the UMP test of θ0 against θ1 

accepts the null hypothesis if f(X|θ0)/f(X|θ1) > k and rejects it if f(X|θ0)/f(X|θ1) < k. By the monotone 

likelihood ratio, this test accepts the null hypothesis if T (X) > C and rejects it if T (X) < C. When 

T (X) = C, the test rejects with probability, say, γ. The constants C and γ should be chosen such that 

Eθ0 [ϕ(X)] = α. Now, note that the same test will be UMP of level α for any other alternative θ2 < θ0 as 

well. So, this test is UMP of level α for the null hypothesis θ = θ0 against the alternative θ < θ0. Thus, 

to show that the same test is UMP of level α for the null θ ≥ θ0 against the alternative θ < θ0, it will be 

enough to show that this test is of level α, i.e. supθ≥θ0 
β(θ) ≤ α. 

Since there always exists a test of level α with power α (this test rejects the null hypothesis with 

probability α independently of the data), β(θ0) ≤ β(θ1). Since the test based on T (x), C, and γ is also 

UMP (of some level) for the null hypothesis θ = θ1 against the alternative θ = θ2 for any θ2 < θ1, the same 

argument yields β(θ1) ≤ β(θ2) for any θ1 ≥ θ2 which is the second statement of the theorem. The ˝rst 

statement of the theorem follows from supθ≥θ0 
β(θ) = β(θ0) = α since β(θ) is decreasing in θ. 

In many cases a UMP test does not exist. Below is an example of such a situation. 

Example Let X1, ..., Xn be a random sample from an N(θ, σ2) distribution with known σ2 . Suppose we 

want to test the null hypothesis, H0, that θ = θ0 against the alternative hypothesis, Ha, that θ ̸= θ0. 

Consider some θ1 < θ0. The only UMP test of level α of θ = θ0 against θ = θ1 rejects the null hypothesis 
√ 

if and only if Xn < θ0 + σzα/ n as we have already seen. But this test has little power in our situation 

for any θ > θ0. Indeed, β(θ) < α for all θ > θ0. So, this test cannot be UMP in this situation, since there 

always exists a test of level α with power α. 

3.1 Unbiased tests 

Since there are no UMP tests among all tests of level α in many situations, the question arises whether we 

can ˝nd UMP tests in some smaller, but still reasonably large, classes of tests. The de˝nition below gives a 

property that reasonable tests should have. 

De˝nition 4. Any test of the null hypothesis θ ∈ Θ0 against the alternative θ ∈ Θ1 is called unbiased if for 

some α ∈ [0, 1], β(θ) ≤ α for all θ ∈ Θ0 and β(θ) ≥ α for all θ ∈ Θ1. 

Let Θ = R be a parameter space. Suppose we want to test the null hypothesis, H0, that θ = θ0 against 

the alternative hypothesis, Ha, that θ ̸= θ0. Consider a test which rejects the null hypothesis with probability 
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∫ 
ϕ(x) upon observed data value x. As before, denote β(θ) = ϕ(x)f(x|θ)dx. If β(θ) is di˙erentiable in θ, 
then for any unbiased test, we necessarily have β ′ (θ0) = 0. Indeed, if this condition does not hold, then 

there exists a point θ in the neighborhood of θ0 such that β(θ) ≤ β(θ0) by de˝nition of derivative. In some 

situations, there exists a UMP test among all unbiased tests of level α even though there are no UMP tests 

among all tests of level α. 

4 Likelihood Ratio Test 

Suppose we want to test the null hypothesis, H0, that θ ∈ Θ0 against the alternative hypothesis, Ha, that 

θ ∈ Θ1. Denote Θ = Θ0 ∪ Θ1. Let L(θ|x) denote likelihood function. Then we have 

De˝nition 5. A Likelihood ratio test (LRT) statistic is 

supθ∈Θ0 
L(θ|x) 

λ(x) = . 
supθ∈Θ L(θ|x) 

By de˝nition, 0 ≤ λ(x) ≤ 1. Small values of the LRT statistic imply that there is a value θ in the 

alternative hypothesis Θ1 which gives much greater likelihood than all values in the null hypothesis. So, 

likelihood ratio tests reject the null hypothesis if and only if λ(x) ≤ c for some c. As usual, the constant c 

is chosen according to the desired level of the test. 

Let θ̂  
r = arg maxθ∈Θ0 L(θ|x) be the ML estimator of the restricted model. Let θ̂  

ur = arg maxθ∈Θ L(θ|x) 
be the ML estimator of the unrestricted model. Then an equivalent way to de˝ne LRT statistic is to set 

L(θ̂  
r|x) 

λ(x) = . 
L(θ̂  

ur|x) 

Example Let X1, ..., Xn be a random sample from an N(θ, 1) distribution. Suppose we want to test the 

null hypothesis, H0, that θ = θ0 against the alternative hypothesis, Ha, that θ ≠ θ0. Then θ̂  
r = θ0 and 

ˆ ˆ θur = θMLE = Xn. So, the LRT statistic is 

L(θ0|x) 
λ(x) = 

L(θ̂  
MLE |x) ∑n 

(2π)−n/2 exp{−(1/2) (Xi − θ0)2} i=1 = ∑n 
(2π)−n/2 exp{−(1/2) (Xi − Xn)2} i=1 

n∑ 
= exp{−(1/2) [(Xi − Xn + Xn − θ0)

2 − (Xi − Xn)
2]} 

i=1 

= exp{−(n/2)(Xn − θ0)
2} 

So, the LRT rejects the null hypothesis if and only if |Xn −θ0| > c. Speci˝cally, the LRT of level α rejects the 
√ √ 

null hypothesis if and only if Xn − θ0 > z1−α/2/ n or Xn − θ0 < zα/2/ n since under the null hypothesis, 
√ 

Xn ∼ N(θ0, 1/ n). 
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