Problem Set 6

No due date

This problem set is intended for your own practice.

1. Let X_1, \ldots, X_n be iid Poisson (λ) and let λ have a Gamma (α, β) distribution (the conjugate family for Poisson)

$$\pi(\lambda) = \lambda^{\alpha - 1} \frac{\exp\{-\lambda/\beta\}}{\Gamma(\alpha)\beta^{\alpha}}$$

- (a) Find the posterior distribution for λ .
- (b) Calculate posterior mean and variance. *Hint:* mean of Gamma (α, β) is $\alpha\beta$; the variance is $\alpha\beta^2$.
- (c) Discuss whether the prior vanishes asymptotically.
- (d) Assume that α is an integer. Show that the posterior for $\frac{2(n\beta+1)}{\beta}\lambda$ given X is $\chi^2(2(\alpha + \Sigma X_i))$.
- (e) Using result of (d), suggest a 95%-credible interval for λ .
- 2. Suppose that the random variables $Y_1, ..., Y_n$ satisfy

$$Y_i = \beta x_i + e_i, \quad i = 1, ..., n,$$

where $x_1, ..., x_n$ are fixed constants and $e_1, ..., e_n$ are i.i.d. normals with mean 0 and known variance σ^2 . The prior for β is normal $N(\beta_0, \tau^2)$.

- (a) Find the posterior for β .
- (b) The maximum likelihood estimator is the OLS estimator, $\hat{\beta}_{OLS} = \frac{\sum_{i=1}^{n} Y_i x_i}{\sum_{i=1}^{n} x_i^2}$. What is the variance of the OLS estimator? How is $\hat{\beta}_{OLS}$ distributed?
- (c) What is the posterior mean of β ? How is it related to $\hat{\beta}_{OLS}$?
- (d) Construct posterior credible set for β .

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

14.381 Statistical Method in Economics Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>