Problem Set 5

Problem 1 is required. All other problems are for your own practice.

1. (Required problem) Suppose that the random variables $Y_1, ..., Y_n$ satisfy

$$y_i = \beta x_i + e_i, \quad i = 1, \dots, n,$$

where $x_1, ..., x_n$ are fixed constants and $e_1, ..., e_n$ are i.i.d. normals with mean 0 and unknown variance σ^2 . Assume that the hypothesis of interest is $H_0: \beta = 0$.

- (a) Write the likelihood function (treating both β and σ^2 as unknown). Write down score and information matrix.
- (b) Find the unrestricted maximum likelihood estimator. Write the Wald test for the null hypothesis.
- (c) Solve the restricted maximization problem. Write the Lagrange Multiplier test.
- (d) Write down the LR test.
- (e) Introduce sample correlation between y_i and x_i :

$$\hat{r} = \frac{\sum_{i=1}^{n} y_i x_i}{\sqrt{\sum_{i=1}^{n} y_i^2} \sqrt{\sum_{i=1}^{n} x_i^2}}$$

Re-write the Wald, LM and LR statistics as functions of \hat{r}^2 and n only.

- (f) Notice, that for any x < 1 the following inequality holds: $x < -ln(1-x) < \frac{x}{1-x}$. This implies some ordering of the statistics discussed above. What is it? Apparently, it holds in general for linear hypothesis in OLS models.
- 2. Assume that n_1 people are given treatment 1 and n_2 people are given treatment 2. Let X_1 be the number of people on treatment 1 who respond favorably to

the treatment and let X_2 be the number of people on treatment 2 who respond favorably. Assume that $X_1 \sim \text{Binomial}(n_1, p_1), X_2 \sim \text{Binomial}(n_2, p_2)$ and $n_1 = \gamma n, n_2 = (1 - \gamma)n$. Let $\psi = p_1 - p_2$.

- (a) Assume that the unknown parameters are (p₁, p₂), write the likelihood.
 Find the MLE estimator of ψ. Would your answer change if you write likelihood in terms of parameters (ψ, p₂)?
- (b) Find the Fisher information matrix $I(p_1, p_2)$.
- (c) Use the multiparameter delta-method to find the asymptotic variance of $\hat{\psi}$ assuming that $n \to \infty$.
- (d) Construct a Wald confidence set for ψ . Is it asymptotic? Why or why not?
- (e) Test the null hypothesis $\psi = 0$ using the asymptotic LR test. Describe all the details.
- 3. Suppose that X_1, \ldots, X_n is a random sample from $N(\mu, \sigma^2)$ with known σ^2 . Find a minimum value of n to guarantee that a 0.95 confidence interval for μ will have length no more than $\frac{\sigma}{4}$.
- 4. Assume that X_1, \ldots, X_n are iid Poisson (λ)
 - (a) Construct a Wald type configure set for λ .
 - (b) Construct a confidence set for λ by inverting Lagrange multiplier (score) test.

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

14.381 Statistical Method in Economics Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>