Problem Set 1

Problems 1-2 and 4-5 are for practice. They will be discussed at recitation. One of the problems from the problem sets will appear on the mid-term exam.

1. Let X and Y be random variables with finite variances.
(i) Show that

$$
\min _{g(\cdot)} E(Y-g(X))^{2}=E(Y-E(Y \mid X))^{2}
$$

where $g(\cdot)$ ranges over all functions.
(ii) Assume $m(X)=E(Y \mid X)$ and write $Y=m(X)+e$. Show that $\operatorname{Var}(Y)=$ $\operatorname{Var}(m(X))+\operatorname{Var}(e)$.
(iii) If $E(Y \mid X=x)=a+b x$ find $E(Y X)$ as a function of moments of X.
2. Show that if a sequence of random variables ξ_{i} converges in distribution to a constant c, then $\xi_{i} \xrightarrow{p} c$.
3. (The required problem) Let $\left\{X_{i}\right\}$ be independent Bernoulli (p). Then $E X_{i}=p$, $\operatorname{Var}\left(X_{i}\right)=p(1-p)$. Let $Y_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$.
(a) Describe the asymptotic behavior of Y_{n}.
(b) Show that for $p \neq \frac{1}{2}$ the estimated variance $Y_{n}\left(1-Y_{n}\right)$ has the following limit behavior

$$
\sqrt{n}\left(Y_{n}\left(1-Y_{n}\right)-p(1-p)\right) \Rightarrow N\left(0,(1-2 p)^{2} p(1-p)\right)
$$

(c) Prove that if (i) $\frac{\sqrt{n}}{\sigma}\left(\xi_{n}-\mu\right) \Rightarrow N(0,1)$ (ii) g is twice continuously differentiable: $g^{\prime}(\mu)=0, g^{\prime \prime}(\mu) \neq 0$, then

$$
n\left(g\left(\xi_{n}\right)-g(\mu)\right) \Rightarrow \sigma^{2} \frac{g^{\prime \prime}(\mu)}{2} \chi_{1}^{2}
$$

Note. You may assume that g has more derivatives, if it simplifies your life. Use O_{p} and o_{p} notation wherever possible.

Note: χ_{1}^{2} is a chi-square distribution with 1 degree of freedom. Let ξ_{1}, \ldots, ξ_{p} be i.i.d. $N(0,1)$, then $\chi_{p}^{2}=\sum_{i=1}^{p} \xi_{i}^{2}$.
(d) Show that for $p=\frac{1}{2}$

$$
n\left[Y_{n}\left(1-Y_{n}\right)-\frac{1}{4}\right] \Rightarrow-\frac{1}{4} \chi_{1}^{2}
$$

Curious fact: Note that $Y_{n}\left(1-Y_{n}\right) \leq \frac{1}{4}$, that is, we always underestimate the variance for $p=\frac{1}{2}$.
4. (Multivariate limit theorems) Let $\mathbf{X}=\left(X_{1}, \ldots, X_{m}\right)^{\prime}$ and $\mathbf{X}_{n}=\left(X_{n 1}, \ldots, X_{n m}\right)^{\prime}$ be m-dimensional random vectors. Define a norm $\|\mathbf{X}\|=\sqrt{X_{1}^{2}+\ldots+X_{m}^{2}}$.
(a) Show that $E\|\mathbf{X}\|<\infty$ if and only if $E\left|X_{i}\right|<\infty$ for all $i=1, . ., m$.
(b) Define $\mathbf{X}_{n} \rightarrow^{p} \mathbf{X}$ if for any $\varepsilon>0, \lim _{n \rightarrow \infty} P\left\{\left\|\mathbf{X}_{n}-\mathbf{X}\right\|>\varepsilon\right\}=0$. Show $\mathbf{X}_{n} \rightarrow^{p} \mathbf{X}$ if and only if $X_{n i} \rightarrow^{p} X_{i}$ for all $i=1, \ldots, m$.
(c) Define $\mathbf{X}_{n} \Rightarrow \mathbf{X}$ if and only if for any non-random m-dimensional vector λ such that $\|\lambda\|=1$ we have $\lambda^{\prime} \mathbf{X}_{n} \Rightarrow \lambda^{\prime} \mathbf{X}$. Formulate and prove some multi-dimensional Central Limit Theorem for independent but not identically distributed random vectors. Hint: use some formulation of onedimensional Linderberg-Fuller's theorem.
5. Prove the following statements:
(a) If $X_{n}=O_{p}\left(n^{-\delta}\right)$ for some $\delta>0$ then $X_{n}=o_{p}(1)$;
(b) If $X_{n}=o_{p}\left(b_{n}\right)$ then $X_{n}=O_{p}\left(b_{n}\right)$;
(c) If $X_{n}=O_{p}\left(n^{\alpha}\right)$ and $Y_{n}=O_{p}\left(n^{\beta}\right)$, then $X_{n} Y_{n}=O_{p}\left(n^{\alpha+\beta}\right)$ and $X_{n}+Y_{n}=$ $O_{p}\left(\max \left\{n^{\alpha}, n^{\beta}\right\}\right) ;$
(d) If $X_{n}=O_{p}\left(n^{\alpha}\right)$ and $Y_{n}=o_{p}\left(n^{\beta}\right)$, then $X_{n} Y_{n}=o_{p}\left(n^{\alpha+\beta}\right)$.

MIT OpenCourseWare
https://ocw.mit.edu

14.381 Statistical Method in Economics

Fall 2018
For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

