
Lecture 10 

Large Sample Tests. 

1 Likelihood Ratio Test 

Let X1, ..., Xn be a random sample from a distribution with pdf f(x|θ) where θ is some one dimensional 

(unknown) parameter. Suppose we want to test the null hypothesis, H0, that θ = θ0 against the alternative 

hypothesis, Ha, that θ ̸= θ0. Assume the same regularity conditions hold as in the MLE theory. Then 

likelihood ratio test (LRT) statistic is 
L(θ0|x) 

λ(x) = 
L(θ̂  

ML|x) 

where x = (x1, ..., xn) is a realization of the data set and θ̂  
ML is the ML estimator. Then we have 

Theorem 1. Under the same regularity conditions as the MLE theory and if H0 : θ = θ0 holds, we have: 

−2 log λ(X) ⇒ χ2
1.

Proof. Denote ℓ(θ|x) = log L(θ|x). By the Taylor theorem, for some θ⋆ between θ0 and θ̂  
ML, 

−2 log λ(X) = −2((ℓ(θ0|X) − ℓ(θ̂  
ML|X)) ) 

∂ℓ(θ̂  
ML|X) 1 ∂2ℓ(θ⋆|X) 

= −2 (θ0 − θ̂  
ML) + (θ0 − θ̂  

ML)
2 

∂θ 2 ∂θ2 

∂2ℓ(θ⋆|X) 
= − (θ0 − θ̂  

ML)
2 

∂θ2 

since ∂ℓ(θ̂  
ML|X)/∂θ = 0 by FOC. 

By the MLE theory, θ̂  
ML →p θ0. So, θ

⋆ →p θ0. As will be shown in 14.385, by the uniform law of large 

numbers, 

1 ∂2ℓ(θ⋆|X)−
n ∂θ2 

1 
= − 

n 

n∑ ∂2 log f(Xi|θ∗)
∂θ2 

→p I1(θ0) 
i=1 

where I1(θ) denotes the information for one observation, i.e. I1(θ) = −Eθ[∂
2 log f(Xi|θ)/∂θ2]. By the 

Slutsky theorem, 
1 ∂2ℓ(θ⋆|X) −

nI1(θ0) ∂θ2 
→p 1 
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In addition, from the MLE theory, 

√ 
n(θ̂  

ML − θ0) ⇒ N(0, I−1(θ0)).1 

So, by Continuous mapping theorem, 

I(θ0)n(θ̂  
ML − θ0)

2 ⇒ χ2
1.

By the Slutsky theorem, 

1 ∂2ℓ(θ⋆|X) −2 log λ(X) = − I(θ0)n(θ0 − θ̂  
ML)

2 ⇒ χ1
2 .

nI(θ0) ∂θ2 

It follows from this theorem that the large sample LR test of level α rejects the null hypothesis if and 

only if −2 log λ(x) > χ2
1(1 − α), where χ1

2(1 − α) denotes 1 − α-quantile of χ2
1. Note that in ˝nite samples, 

the size of this test may be greater than α but as the sample size increases, the size will converge to α. 

1.1 Formulation for multi-dimensional case 

In general, let θ be a multidimensional parameter (say dimensionality is k). Suppose that the null hypothesis 

Θ0 can be written in the form {θ ∈ Θ : g1(θ) = 0, ..., gp(θ) = 0} where g1, ..., gp denote some nonlinear 

functions of θ. Equations g1(θ) = 0, ..., gp(θ) = 0 are called restrictions of the model (and k ≥ p, if 

k > p then it is a composite hypothesis, if k = p then simple). Assume that restrictions are jointly linear 

independent in the sense that we cannot drop any subset of restrictions without changing set Θ0. Then, 

under some regularity conditions (mainly smoothness of g1, ..., gp), ( ) 

−2 log λ(X) = 2 max ℓ(θ|X) − max ℓ(θ|X) ⇒ χ2 
p

θ∈Θ θ∈Θ0

under the assumption that the null hypothesis hold. So, large sample LR test of level α rejects the null 

hypothesis if and only if −2 log λ(X) > χ2(1 − α). Often, we denote LR = −2 log λ(X). LR is called the p 

likelihood ratio statistic. Let us denote θ̂  
0 = arg maxθ∈Θ0 ℓ(θ|X) to be the restricted estimate (estimates 

assuming the null is true), then 

LR = 2(ℓ(θ̂  
ML|X) − ℓ(θ̂  

0|X)) 

Example Let X1, ..., Xn be a random sample from a Poisson(λ) distribution. Recall that the pmf of the 

Poisson(λ) distribution is f(x|λ) = λxe−λ/x! for x = 0, 1, 2, .... Suppose we want to test the null hypothesis, 

H0, that λ = λ0 = 6 against the alternative hypothesis, Ha, that λ ≠ λ0. Suppose we observe Xn = 5 while 

our sample size n = 100. Let us derive the result of the large sample LR test. Likelihood function is 

∑ 
Xi e−nλi=1 λ 

n 

L(λ|X) = ∏n 
i=1 Xi! 
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where X = (X1, ..., Xn). The log-likelihood is 

n n ∑ ∏
ℓ(λ|X) = Xi log λ − nλ − log Xi! 

i=1 i=1 

So, the ML estimator λ̂ 
ML solves 

n∑
Xi/λ̂ 

ML − n = 0 
i=1 

or, equivalently, 

λ̂ML = Xn 

So, LRT statistic is ∑ 
i=1 XI −n(λ0−λ̂ 

ML) λ(x) = (λ0/λ̂ 
ML) 

n 

e . 

Then 

LR = −2 log λ(x) ( ) 
n∑

= −2 Xi log(λ0/λ̂ 
ML) − n(λ0 − λ̂ 

ML) 
i=1 

= −2n(Xn log(λ0/Xn) − λ0 + Xn) 

= −200(5 log(6/5) − 6 + 5) 

≈ 17.6, 

while χ2
1(0.95) = 3.98. So large sample LR test rejects the null hypothesis. 

2 Large Sample Tests: Wald 

2.1 Simplistic 1-dimensional case 

Once we know the asymptotic distribution of some statistic, say, δ(X1, ..., Xn), we can construct a large 

sample test based on this asymptotic distribution. Suppose we can show that 

√ 
n(δ(X1, ..., Xn) − τ) ⇒ N(0, σ2) 

where τ is some 1-dimensional parameter. Suppose we have a consistent estimator σ̂2 of σ2 , i.e. σ̂2 →p σ
2 . 

By the Slutsky theorem, 
√ 
n(δ(X1, ..., Xn) − τ)/σ̂ ⇒ N(0, 1) 

Suppose we want to test the null hypothesis, H0, that τ = τ0 against the two-sided alternative. Under the 

null hypothesis, 
√ 
n(δ(X1, ..., Xn) − τ0)/σ̂ ⇒ N(0, 1). 
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√ δ(X1,...,Xn)−τ0 So, one test of level α will be to reject the null hypothesis if t = n is smaller than zα/2 or σ̂ 

larger than z1−α/2. Which is equivalent to calculating statistic 

( )2 
δ(X) − τ0 

W = n 
σ̂ 

and comparing it to 1 − α quantile of χ2
1 distribution. 

2.2 Multi-dimensional case 

Notice that this logic could be easily extended to multi-dimensional parameters. Assume that τ is p-

dimensional and 
√ 
n(δ(X) − τ ) ⇒ N(0, Σ), 

and we can construct a consistent estimate Σ̂ of the covariance matrix Σ, that is Σ̂ →p Σ, then 

W = n(δ(X) − τ0) 
′ Σ̂ −1(δ(X) − τ0) ⇒ χ2 

p 

if H0 : τ = τ0. 

2.3 Special case: 1-dimensional MLE 

We can specialize this to the MLE case, for example, and see how this test compares to the LR introduced 

before. Let θ̂  
ML be the ML estimator of 1-dimensional parameter θ ∈ R. We know that, under some 

regularity conditions, 
√ 
n(θ̂  

ML − θ) ⇒ N(0, I−1(θ)) 1 

Under some regularity conditions, I−1(θ) may be consistently estimated by I−1(θ̂  
ML). Suppose that our 1 1 

null hypothesis is H0 : θ = θ0. Then, under the null hypothesis, 

√ 
nI1/2(θ̂  

ML)(θ̂  
ML − θ0) ⇒ N(0, 1) 

Under the null hypothesis 

W = nI1(θ̂  
ML)(θ̂  

ML − θ0)
2 ⇒ χ1

2 . 

Recall that LR-statistic is given by ( ) 
1 ∂2ℓ(θ⋆|X) 

LR = n(θ̂  
ML − θ0)

2 − 
n ∂θ2 

where θ⋆ is between θ0 and θ̂  
ML. As in the case of Wald statistic, under the null hypothesis, 

LR ⇒ χ2 
1 
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Moreover, 

W − LR →p 0 

since I(θ̂  
ML) →p I(θ0) and −(1/n)∂2ℓ(θ⋆|X)/∂θ2 →p I(θ0). Thus, LR and Wald statistics are asymptotically 

equivalent. They are di˙erent in ˝nite samples though. In particular, it is known that W ≥ LR in the case 

of normal likelihood. 

An advantage of the Wald statistic in comparison with the LR statistic is that it only includes calculations 

based on the unrestricted estimator θ̂  
ML. On the other hand, in order to calculate the Wald statistic, we 

have to estimate the information matrix. 

Example (cont.) Let us calculate the Wald statistic in our example with a random sample from the 

Poisson(λ) distribution. The log-likelihood is 

n n ∑ ∏
ℓ(λ|X) = Xi log λ − nλ − log Xi! 

i=1 i=1 

So, 
n∑

∂ℓ(λ|X)/∂λ = Xi/λ − n 
i=1 

and 
n∑

∂2ℓ(λ|X)/∂λ2 = − Xi/λ
2 . 

i=1 

Thus, [ ] 
1 ∂2ℓ(λ) 1 

I1(λ) = −E = . 
n ∂λ2 λ 

So, the Wald statistic is 

W = n(λ̂ − λ0)
2/λ̂ = 100 · (5 − 6)2 · (1/5) = 20. 

So, the test based on the Wald statistic rejects the null hypothesis with an even smaller p-value than the 

test based on the LR statistic. 

3 Score Test 

3.1 1-dimensional case 

Recall that the score is de˝ned by 

n∑ ∂ℓ ∂ log L ∂ log f(Xi|θ)
S(θ) = (θ|X) = (θ|X) = . 

∂θ ∂θ ∂θ 
i=1 
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By the ˝rst order condition for the ML estimator, S(θ̂  
ML) = 0. By the ˝rst information equality, 

n [ ] ∑ ∂ log f(Xi|θ0) 
E[S(θ0)] = E = 0. 

∂θ 
i=1 

By de˝nition of Fisher information, [( )2
] 

∂ log f(Xi|θ) 
E = I1(θ0). 

∂θ 

So, by the Central limit theorem, under the null hypothesis (if θ is 1-dimensional) 

1 S(θ0) √ √ ⇒ N(0, 1). 
n I1(θ0) 

By the continuous mapping theorem, 

LM = S(θ0)
2/(nI1(θ0)) ⇒ χ2

1. 

The LM is called Lagrange Multiplier (LM) statistic. Let us show where the name comes from. Consider 

the constrained optimization problem log L(θ|x) → max s.t. θ = θ0. The lagrangian is 

H = log L(θ|x) − λ(θ − θ0). 

The FOC is 

S(θ0) = λ. 

So, indeed, the score is connected to the lagrange multiplier. 

Comparison to LR and Wald Let us show that LM − LR →p 0. By the Taylor's expansion, 

∂2ℓ 
S(θ0) = S(θ0) − S(θ̂  

ML) = (θ ⋆|X)(θ0 − θ̂  
ML), 

∂θ2 

where θ⋆ is between θ0 and θ̂  
ML. As before, −(1/n)∂2ℓ(θ⋆|X)/∂θ2 →p I1(θ0). By the Slutsky theorem, 

( )2 
2 1 ∂2ℓ 

LM = n (θ ⋆|X) (θ0 − θ̂  
ML)

2/(nI1(θ0)) = nI1(θ0)(θ0 − θ̂  
ML)

2(1 + op(1)) 
n ∂θ2 

Thus, we have shown that LR, Wald, and LM statistics are all asymptotically equivalent under the null 

hypothesis. However, they di˙er in ˝nite samples. For example, in the case of normal likelihood, we have 

LM ≤ LR ≤ W . 

6 



3.2 Multi-dimensional case 

Assume that the unknown parameter θ is k-dimensional, while the null hypothesis is imposing p-dimensional 
∂ℓ restriction Θ0 = {θ ∈ Θ : g1(θ) = 0, ..., gp(θ) = 0}. Score function is k × 1- vector function S(θ) = (θ|X). ∂θ 

Denote θ̂  
0 to be restricted estimator: θ̂  

0 = arg maxθ∈Θ0 ℓ(θ|X). Then 

LM =
1 
S(θ̂  

0)I1(θ̂  
0)

−1S(θ̂  
0) ⇒ χ2 

pn 

if the null holds. 

An advantage of the LM statistic is that it only includes calculations based on the restricted estimator 

θ0. On the other hand, in order to ˝nd the LM statistic, we have to estimate Fisher information. 

Example (cont.) Let us calculate the LM statistic in our example with a random sample from Poisson(λ) 

distribution. We have 
n∑

S(λ0) = Xi/λ0 − n = 500/6 − 100 = −100/6 
i=1 

and I(λ0) = 1/λ0 = 1/6. So, 

( )2 
S(λ0)

2 1 100 100 
LM = = · · 6 = ≈ 17 

nI(λ0) 100 6 6 

4 Generalizations and Summary 

Let x = (X1, ..., Xn) be a random sample from distribution f(X|θ) with θ ∈ Θ. Suppose we want to test 

the null hypothesis, H0, that θ ∈ Θ0 against the alternative hypothesis, Ha, that θ ∈/ Θ0. Let θ̂  
0 be a 

restricted estimator, i.e. θ̂  
0 solves maxθ∈Θ0 L(θ|x), and θ̂  

ML an unrestricted (ML) estimator, i.e. θ̂  
ML solves 

maxθ∈Θ L(θ|x). Assume for simplicity that the null can be formulated as g(θ) = 0, where g is p-dimensional 

function. Then, under the null hypothesis, 

LR = 2(ℓ(θ̂  
ML|X) − ℓ(θ̂  

0|X)) ⇒ χ2 
p

W = (g(θ̂  
ML) − 0)Σ̂−1(g(θ̂  

ML) − 0) ⇒ χ2 
p

LM = S(θ̂  
0)I

−1(θ̂  
0)S(θ̂  

0) ⇒ χ2 
n p ( )′ ( ) 

∂g ∂g where Σ̂ = (θ̂  
ML) I1 

−1(θ̂  
ML) ∂θ (θ̂

 
ML) is a natural delta-method inspired estimate of asymptotic ∂θ 

variance. Under a proper regularity conditions all of these tests are asymptotically equivalent to each other. 

Notice, that LR and LM are invariant to formulation of the null hypothesis, while Wald is not. 
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