
Lecture 5

Point estimators.

1 Estimators. Properties of estimators. 

An estimator is a function of the data. If we have a parametric family with parameter θ, then an estimator 

of θ is usually denoted by θ̂  . 

1.1 Unbiasness 

Let X be our data. Let θ̂ = T (X) be an estimator where T is some function. 

We say that θ̂  is unbiased for θ if Eθ[T (X)] = θ for all possible values of θ where Eθ denotes the expectation 

when θ is the true parameter value. Thus, the concept of unbiasness means that we are on average right. 

The bias of θ̂  is de˝ned by Bias(θ̂) = Eθ[θ̂] − θ. Thus, θ̂  is unbiased if and only if its bias equals 0. Thus, 

sample average and sample variance are unbiased estimators of population mean and population variance 

correspondingly. 

There are some cases when unbiased estimators do not exist. As an example, let X1, ..., Xn be a random 

sample from a Bernoulli(p) distribution. Suppose that our parameter of interest θ = 1/p. Let θ̂ = T (X) ∑ 
be some estimator. Then E[θ̂] = (x1,...,xn)∈{0,1}n T (x1, ..., xn)P {(X1, ..., Xn) = (x1, ...xn)}. We know that ∑ ∑ 
for any (x1, ..., xn) ∈ {0, 1}n , P {(X1, ..., Xn) = (x1, ...xn)} = p xi (1 − p) (1−xi) which is a polynomial of 

degree n in p. Therefore, E[θ̂] is a polynomial of degree at most n in p. However, 1/p is not a polynomial 

at all. Hence, there are no unbiased estimators in this case. ∑ n 1 The example above is very typical in the sense that parameter p has an unbiased estimator p̂ = Xp, n i=1 
1 but the parameter of interest is a non-linear function of p. Notice that E 1 ̸= , and the bias appears from ξ Eξ 

the non-linear transformation. This bias can be partially corrected by bootstrap. 

1.1.1 Bootstrap bias correction 

Another task for which the bootstrap is used is bias-correction. Suppose, EZ = µ and, we're interested in 

a non-linear function of µ, say θ = g(µ). Here Z may be a random variable coming from transformations of ∑ n 1 observed: Zi = h(Xi). We do have an unbiased estimate of µ, say µ̂ = Z = Zi. We may try to use n i=1 

this in order to estimate θ : θ̂ = g(Z̄). Estimator θ̂  is reasonable but is biased unless g() is linear. The bias 

is Bias = Eθ̂  − g(µ). We can estimate the bias using the bootstrap: 

1. For each b = 1, ..., B generate a bootstrap sample, {Z∗ } from set {Z1, ..., Zn} with replacement; ib 
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∗ ∑ n 1 2. Calculate Z = Z∗ ; b n i=1 ib 

∗ 3. Estimate θ∗ = g(z̄ ); b b ∑B 1 4. Bias ∗ = θ∗ − θ̂  ≈ Bias. B b=1 b 

5. Use θ̃ = θ̂  − Bias ∗ as your estimate. 

d2 dg(µ) g(µ) Why does it work? Let's denote G1(µ) = and G2(µ) = . Notice that if CLT works we have dµ dµ2 
√ 
n(Z̄ − µ) ⇒ N(0, σ2), where σ2 = V ar(Zi); or Z̄ − µ = Op(1/ 

√ 
n). Then z z 

1 1 
θb− θ = g(Z) − g(µ) = G1(µ)(Z̄ − µ) + G2(µ)(Z̄ − µ)2 + op( ), 

2 n 

1 1 σ2 1 z Bias = E(θb− θ) = G2(µ)E(Z̄ − µ)2 = G2(µ) + o( ), 
2 2 n n 

and similarly 
2 1 s 1 z Bias ∗ = G2(z̄) + op( ). 

2 n n 

As a result, 
1 

Bias ∗ − Bias = op( ). 
n 

This procedure eliminates the leading term in bias (O(1/n)), but not the whole of the bias. The remaining 

bias is of order o(1/n). Notice that in principle there was an asymptotic approach to eliminate bias as well 
1 z (as we did get the formula for the leading term G2(µ) 

σ2 

+o( 1 )). One in principle could have approximated 2 n n 
s z it by 1 G2(Z) 
2 

, but the bootstrap does this automatically. 2 n 
E(X−EX)3 

Example. Assume we wish to estimate the skewness of a distribution θ = A natural estimate 
[V ar(X)]3/2 . 

is 
n 1 ∑ 

X̄)3 (Xi − n i=1 ˆ θ = . 
s3 

¯ n 
X2 1 n 

This is a non-linear function of Z = (X,¯ 1 ∑ 
i , 

∑ 
Xi 

3). As such it will most likely have bias, which n i=1 n i=1 

we can correct with the bootstrap. 

1.1.2 E°ciency: MSE 

Another concept that evaluates the performance of estimators is the MSE (Mean Squared Error). By 

de˝nition, MSE(θ̂) = Eθ[(θ̂  − θ)2]. Last time we showed a useful decomposition for MSE: 

MSE(θ̂) = Bias2(θ̂) + V (θ̂). 

Estimators with smaller MSE are considered to be better, meaning more e°cient. Quite often there is a 

trade-o˙ between the bias of the estimator and its variance. Thus, we may prefer a slightly biased estimator 

to an unbiased one if the former has much smaller variance in comparison to the latter one. 

∑ n 
σ2 2 Example Let X1, ..., Xn be a random sample from N(µ, σ2). Let ˆ = s = (Xi − Xn)

2/(n − 1) and 1 i=1 ∑n 
σ̂2 = (Xi − Xn)

2/n be two estimators of σ2 . We know that E[σ̂1
2] = σ2 . So E[σ̂2

2] = ((n − 1)/n)E[σ̂1
2] = 2 i=1 
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((n − 1)/n)σ2 , and Bias(σ̂2
2) = σ2/n. We also know that (n − 1)σ̂1

2/σ2 ∼ χ2(n − 1). What is V (χ2(n − 1))? 

Let ξ1, ..., ξn−1 be a random sample from N(0, 1). Then ξ = ξ1
2 + ... + ξ2 ∼ χ2(n − 1). By linearity of n−1 

expectation, E[ξ] = (n − 1). By independence, 

E[ξ2] = E[(ξ1
2 + ... + ξn 

2 
−1)

2] 
n−1∑ ∑ 

= E[ξi 
4] + 2 E[ξi 

2ξj 
2] 

i=1 1≤i<j≤n−1 ∑ 
= 3(n − 1) + 2 E[ξi 

2]E[ξj 
2] 

1≤i<j≤n−1 

= 3(n − 1) + (n − 1)(n − 2) 

= (n − 1)(n + 1), 

since E[ξ4] = 3. So i 

V (ξ) = E[ξ2] − (E[ξ])2 = (n − 1)(n + 1) − (n − 1)2 = 2(n − 1). 

Thus, V (σ̂1
2) = V (σ2ξ/(n − 1)) = 2σ4/(n − 1) and V (σ̂2

2) = ((n − 1)/n)2V (σ̂1
2) = 2σ4(n − 1)/n2 . Finally, 

MSE(σ̂1
2) = 2σ4/(n − 1) and 

MSE(σ̂2
2) = σ4/n2 + 2σ4(n − 1)/n2 = (2n − 1)σ2/n2 . 

So, MSE(σ̂1
2) < MSE(σ̂2

2) if and only if 2/(n − 1) < (2n − 1)/n2 , which is equivalent to 3n < 1. So, for any 

n ≥ 1, MSE(σ̂1
2) > MSE(σ̂2

2) in spite of the fact that σ̂2 is unbiased. 1 

In general, the idea of minimizing MSE is not in agreement with unbiasedness: one may get better 

e°ciency if we allow for some bias. Here is �Stein's shrinkage� idea. Assume that the parameter set Θ is 

bounded and θ̂ = T (X) is an unbiased estimator of θ: ET (X) = θ. Take any ˝xed point θ∗ ∈ Θ and shrink 

the initial estimator towards it: 

θ̂  
1 = (1 − c)T (X) + cθ ∗ . 

Here c characterize the amount of shrinkage. The new estimator is somewhat biased Bias(θ̂  
1) = c(θ∗ − θ) 

but is less dispersed V ar(θ̂  
1) = (1 − c)2V ar( ˆ So, we have Θ). 

MSE(θ̂  
1) = c 2(θ ∗ − θ)2 + (1 − c)2V ar(θ̂). 

One may calculate the derivative of MSE with respect to c at c = 0 and ˝nd that it is negative, and thus 

some small positive amount of shrinkage c > 0 will improve the e°ciency of the initial estimator. 
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1.2 Asymptotic properties. 

1.2.1 Consistency 

Imagine a thought experiment in which the number of observations n increases without bound, i.e. n → ∞. 

Suppose that for each n, we have an estimator θ̂  
n. 

We say that θ̂  
n is consistent for θ if θ̂  

n →p θ. 

Example Let X1, ..., Xn be a random sample from some distribution with mean µ and variance σ2 . Let ∑ n 2 2 µ̂ = µ̂n = Xn be our estimator of µ and s = s = (Xi − Xn)
2/(n − 1) be our estimator of σ2 . By the n i=1 

Law of large numbers, we know that µ̂ →p µ as n → ∞. In addition, 

n∑ 
2 s = (Xi − Xn)

2/(n − 1) 
i=1 
n∑ 

= (Xi − µ)2/(n − 1) − (n/(n − 1))(Xn − µ)2 

i=1 
n∑ 

= (n/(n − 1))( (Xi − µ)2/n) − (n/(n − 1))(Xn − µ)2 

i=1 ∑ ∑ n n 
By the Law of Large Numbers, (Xi − µ)2/n →p E[(Xi − µ)2 = σ2 and Xn − µ = (Xi − µ)/n →p i=1 i=1 

E[Xi − µ] = 0. By using the Continuous Mapping Theorem, (Xn − µ)2 →p 0. In addition, n/(n − 1) →p 1. 

σ2 2 So, by the Slutsky theorem, s2 →p . So µ̂ and s are consistent for µ and σ2 correspondingly. 

1.2.2 Asymptotic Normality 

We say that θ̂  is asymptotically normal if there are sequences {an}∞ and {rn}∞ and constant σ2 such n=1 n=1 

that rn(θ̂  − an) ⇒ N(0, σ2). Then rn is called the rate of convergence, an - the asymptotic mean, and σ2 -
√ 

the asymptotic variance. In many cases, one can choose an = θ and rn = n. We will use the concept of 

asymptotic normality for con˝dence set construction later on. For now, let us consider an example. 

Example Let X1, ..., Xn be a random sample from some distribution with mean µ and variance σ2 . Let µ̂ 
2 and s be the sample mean and the sample variance correspondingly. Then, by the Central limit theorem, 

√ 
2 n(µ̂ − µ) ⇒ N(0, σ2). As for s , 

n ∑ √ √ √ √ 
n(s 2 − σ2) = (n/(n − 1))[ ((Xi − µ)2 − σ2)/ n − ( n(Xn − µ)/n1/4)2] + ( n/(n − 1))σ2 

i=1 ∑ √ n 
By the Central limit theorem, ((Xi −µ)2 −σ2)/ n ⇒ N(0, τ 2) with τ2 = E[((Xi −µ)2 −σ2)2]. Note that i=1 √ 
τ 2 = µ4−2σ2E[(Xi−µ)2]+σ4 = µ4−σ4 with µ4 = E[(Xi−µ)4]. By Slutsky theorem, n(Xn−µ)/n1/4 →p 0. 

In addition, ( 
√ 
n/(n − 1))σ2 →p 0. So, by the Slutsky theorem again, 

√ 
n(s2 − σ2) ⇒ N(0, τ2). 
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