Lecture 5

Point estimators.

1 Estimators. Properties of estimators.

An estimator is a function of the data. If we have a parametric family with parameter θ, then an estimator of θ is usually denoted by $\hat{\theta}$.

1.1 Unbiasness

Let X be our data. Let $\hat{\theta}=T(X)$ be an estimator where T is some function.
We say that $\hat{\theta}$ is unbiased for θ if $E_{\theta}[T(X)]=\theta$ for all possible values of θ where E_{θ} denotes the expectation when θ is the true parameter value. Thus, the concept of unbiasness means that we are on average right. The bias of $\hat{\theta}$ is defined by $\operatorname{Bias}(\hat{\theta})=E_{\theta}[\hat{\theta}]-\theta$. Thus, $\hat{\theta}$ is unbiased if and only if its bias equals 0 . Thus, sample average and sample variance are unbiased estimators of population mean and population variance correspondingly.

There are some cases when unbiased estimators do not exist. As an example, let X_{1}, \ldots, X_{n} be a random sample from a $\operatorname{Bernoulli}(p)$ distribution. Suppose that our parameter of interest $\theta=1 / p$. Let $\hat{\theta}=T(X)$ be some estimator. Then $E[\hat{\theta}]=\sum_{\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}} T\left(x_{1}, \ldots, x_{n}\right) P\left\{\left(X_{1}, \ldots, X_{n}\right)=\left(x_{1}, \ldots x_{n}\right)\right\}$. We know that for any $\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}, P\left\{\left(X_{1}, \ldots, X_{n}\right)=\left(x_{1}, \ldots x_{n}\right)\right\}=p^{\sum x_{i}}(1-p)^{\sum\left(1-x_{i}\right)}$ which is a polynomial of degree n in p. Therefore, $E[\hat{\theta}]$ is a polynomial of degree at most n in p. However, $1 / p$ is not a polynomial at all. Hence, there are no unbiased estimators in this case.

The example above is very typical in the sense that parameter p has an unbiased estimator $\hat{p}=\frac{1}{n} \sum_{i=1}^{n} X_{p}$, but the parameter of interest is a non-linear function of p. Notice that $E \frac{1}{\xi} \neq \frac{1}{E \xi}$, and the bias appears from the non-linear transformation. This bias can be partially corrected by bootstrap.

1.1.1 Bootstrap bias correction

Another task for which the bootstrap is used is bias-correction. Suppose, $E Z=\mu$ and, we're interested in a non-linear function of μ, say $\theta=g(\mu)$. Here Z may be a random variable coming from transformations of observed: $Z_{i}=h\left(X_{i}\right)$. We do have an unbiased estimate of μ, say $\hat{\mu}=\bar{Z}=\frac{1}{n} \sum_{i=1}^{n} Z_{i}$. We may try to use this in order to estimate $\theta: \hat{\theta}=g(\bar{Z})$. Estimator $\hat{\theta}$ is reasonable but is biased unless $g()$ is linear. The bias is Bias $=E \hat{\theta}-g(\mu)$. We can estimate the bias using the bootstrap:

1. For each $b=1, \ldots, B$ generate a bootstrap sample, $\left\{Z_{i b}^{*}\right\}$ from set $\left\{Z_{1}, \ldots, Z_{n}\right\}$ with replacement;
2. Calculate $\bar{Z}_{b}^{*}=\frac{1}{n} \sum_{i=1}^{n} Z_{i b}^{*}$;
3. Estimate $\theta_{b}^{*}=g\left(\bar{z}_{b}^{*}\right)$;
4. $\mathrm{Bias}^{*}=\frac{1}{B} \sum_{b=1}^{B} \theta_{b}^{*}-\hat{\theta} \approx$ Bias.
5. Use $\tilde{\theta}=\hat{\theta}-$ Bias* * as your estimate.

Why does it work? Let's denote $G_{1}(\mu)=\frac{d g(\mu)}{d \mu}$ and $G_{2}(\mu)=\frac{d^{2} g(\mu)}{d \mu^{2}}$. Notice that if CLT works we have $\sqrt{n}(\bar{Z}-\mu) \Rightarrow N\left(0, \sigma_{z}^{2}\right)$, where $\sigma_{z}^{2}=\operatorname{Var}\left(Z_{i}\right)$; or $\bar{Z}-\mu=O_{p}(1 / \sqrt{n})$. Then

$$
\begin{gathered}
\widehat{\theta}-\theta=g(\bar{Z})-g(\mu)=G_{1}(\mu)(\bar{Z}-\mu)+\frac{1}{2} G_{2}(\mu)(\bar{Z}-\mu)^{2}+o_{p}\left(\frac{1}{n}\right), \\
\text { Bias }=E(\widehat{\theta}-\theta)=\frac{1}{2} G_{2}(\mu) E(\bar{Z}-\mu)^{2}=\frac{1}{2} G_{2}(\mu) \frac{\sigma_{z}^{2}}{n}+o\left(\frac{1}{n}\right),
\end{gathered}
$$

and similarly

$$
\text { Bias }^{*}=\frac{1}{2} G_{2}(\bar{z}) \frac{s_{z}^{2}}{n}+o_{p}\left(\frac{1}{n}\right)
$$

As a result,

$$
\text { Bias }^{*}-\text { Bias }=o_{p}\left(\frac{1}{n}\right)
$$

This procedure eliminates the leading term in bias $(O(1 / n))$, but not the whole of the bias. The remaining bias is of order $o(1 / n)$. Notice that in principle there was an asymptotic approach to eliminate bias as well (as we did get the formula for the leading term $\left.\frac{1}{2} G_{2}(\mu) \frac{\sigma_{z}^{2}}{n}+o\left(\frac{1}{n}\right)\right)$. One in principle could have approximated it by $\frac{1}{2} G_{2}(\bar{Z}) \frac{s_{z}^{2}}{n}$, but the bootstrap does this automatically.

Example. Assume we wish to estimate the skewness of a distribution $\theta=\frac{E(X-E X)^{3}}{[\operatorname{Var}(X)]^{3 / 2}}$. A natural estimate is

$$
\hat{\theta}=\frac{\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{3}}{s^{3}} .
$$

This is a non-linear function of $\bar{Z}=\left(\bar{X}, \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}, \frac{1}{n} \sum_{i=1}^{n} X_{i}^{3}\right)$. As such it will most likely have bias, which we can correct with the bootstrap.

1.1.2 Efficiency: MSE

Another concept that evaluates the performance of estimators is the MSE (Mean Squared Error). By definition, $\operatorname{MSE}(\hat{\theta})=E_{\theta}\left[(\hat{\theta}-\theta)^{2}\right]$. Last time we showed a useful decomposition for MSE:

$$
\operatorname{MSE}(\hat{\theta})=\operatorname{Bias}^{2}(\hat{\theta})+V(\hat{\theta})
$$

Estimators with smaller MSE are considered to be better, meaning more efficient. Quite often there is a trade-off between the bias of the estimator and its variance. Thus, we may prefer a slightly biased estimator to an unbiased one if the former has much smaller variance in comparison to the latter one.

Example Let X_{1}, \ldots, X_{n} be a random sample from $N\left(\mu, \sigma^{2}\right)$. Let $\hat{\sigma}_{1}^{2}=s^{2}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2} /(n-1)$ and $\hat{\sigma}_{2}^{2}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2} / n$ be two estimators of σ^{2}. We know that $E\left[\hat{\sigma}_{1}^{2}\right]=\sigma^{2}$. So $E\left[\hat{\sigma}_{2}^{2}\right]=((n-1) / n) E\left[\hat{\sigma}_{1}^{2}\right]=$
$((n-1) / n) \sigma^{2}$, and $\operatorname{Bias}\left(\hat{\sigma}_{2}^{2}\right)=\sigma^{2} / n$. We also know that $(n-1) \hat{\sigma}_{1}^{2} / \sigma^{2} \sim \chi^{2}(n-1)$. What is $V\left(\chi^{2}(n-1)\right)$? Let $\xi_{1}, \ldots, \xi_{n-1}$ be a random sample from $N(0,1)$. Then $\xi=\xi_{1}^{2}+\ldots+\xi_{n-1}^{2} \sim \chi^{2}(n-1)$. By linearity of expectation, $E[\xi]=(n-1)$. By independence,

$$
\begin{aligned}
E\left[\xi^{2}\right] & =E\left[\left(\xi_{1}^{2}+\ldots+\xi_{n-1}^{2}\right)^{2}\right] \\
& =\sum_{i=1}^{n-1} E\left[\xi_{i}^{4}\right]+2 \sum_{1 \leq i<j \leq n-1} E\left[\xi_{i}^{2} \xi_{j}^{2}\right] \\
& =3(n-1)+2 \sum_{1 \leq i<j \leq n-1} E\left[\xi_{i}^{2}\right] E\left[\xi_{j}^{2}\right] \\
& =3(n-1)+(n-1)(n-2) \\
& =(n-1)(n+1),
\end{aligned}
$$

since $E\left[\xi_{i}^{4}\right]=3$. So

$$
V(\xi)=E\left[\xi^{2}\right]-(E[\xi])^{2}=(n-1)(n+1)-(n-1)^{2}=2(n-1)
$$

Thus, $V\left(\hat{\sigma}_{1}^{2}\right)=V\left(\sigma^{2} \xi /(n-1)\right)=2 \sigma^{4} /(n-1)$ and $V\left(\hat{\sigma}_{2}^{2}\right)=((n-1) / n)^{2} V\left(\hat{\sigma}_{1}^{2}\right)=2 \sigma^{4}(n-1) / n^{2}$. Finally, $\operatorname{MSE}\left(\hat{\sigma}_{1}^{2}\right)=2 \sigma^{4} /(n-1)$ and

$$
\operatorname{MSE}\left(\hat{\sigma}_{2}^{2}\right)=\sigma^{4} / n^{2}+2 \sigma^{4}(n-1) / n^{2}=(2 n-1) \sigma^{2} / n^{2}
$$

$\operatorname{So}, \operatorname{MSE}\left(\hat{\sigma}_{1}^{2}\right)<\operatorname{MSE}\left(\hat{\sigma}_{2}^{2}\right)$ if and only if $2 /(n-1)<(2 n-1) / n^{2}$, which is equivalent to $3 n<1$. So, for any $n \geq 1, \operatorname{MSE}\left(\hat{\sigma}_{1}^{2}\right)>\operatorname{MSE}\left(\hat{\sigma}_{2}^{2}\right)$ in spite of the fact that $\hat{\sigma}_{1}^{2}$ is unbiased.

In general, the idea of minimizing MSE is not in agreement with unbiasedness: one may get better efficiency if we allow for some bias. Here is "Stein's shrinkage" idea. Assume that the parameter set Θ is bounded and $\hat{\theta}=T(X)$ is an unbiased estimator of $\theta: E T(X)=\theta$. Take any fixed point $\theta^{*} \in \Theta$ and shrink the initial estimator towards it:

$$
\hat{\theta}_{1}=(1-c) T(X)+c \theta^{*}
$$

Here c characterize the amount of shrinkage. The new estimator is somewhat biased $\operatorname{Bias}\left(\hat{\theta}_{1}\right)=c\left(\theta^{*}-\theta\right)$ but is less dispersed $\operatorname{Var}\left(\hat{\theta}_{1}\right)=(1-c)^{2} \operatorname{Var}(\hat{\Theta})$. So, we have

$$
\operatorname{MSE}\left(\hat{\theta}_{1}\right)=c^{2}\left(\theta^{*}-\theta\right)^{2}+(1-c)^{2} \operatorname{Var}(\hat{\theta})
$$

One may calculate the derivative of MSE with respect to c at $c=0$ and find that it is negative, and thus some small positive amount of shrinkage $c>0$ will improve the efficiency of the initial estimator.

1.2 Asymptotic properties.

1.2.1 Consistency

Imagine a thought experiment in which the number of observations n increases without bound, i.e. $n \rightarrow \infty$. Suppose that for each n, we have an estimator $\hat{\theta}_{n}$.

We say that $\hat{\theta}_{n}$ is consistent for θ if $\hat{\theta}_{n} \rightarrow_{p} \theta$.

Example Let X_{1}, \ldots, X_{n} be a random sample from some distribution with mean μ and variance σ^{2}. Let $\hat{\mu}=\hat{\mu}_{n}=\bar{X}_{n}$ be our estimator of μ and $s^{2}=s_{n}^{2}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2} /(n-1)$ be our estimator of σ^{2}. By the Law of large numbers, we know that $\hat{\mu} \rightarrow_{p} \mu$ as $n \rightarrow \infty$. In addition,

$$
\begin{aligned}
s^{2} & =\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2} /(n-1) \\
& =\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2} /(n-1)-(n /(n-1))\left(\bar{X}_{n}-\mu\right)^{2} \\
& =(n /(n-1))\left(\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2} / n\right)-(n /(n-1))\left(\bar{X}_{n}-\mu\right)^{2}
\end{aligned}
$$

By the Law of Large Numbers, $\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2} / n \rightarrow_{p} E\left[\left(X_{i}-\mu\right)^{2}=\sigma^{2}\right.$ and $\bar{X}_{n}-\mu=\sum_{i=1}^{n}\left(X_{i}-\mu\right) / n \rightarrow_{p}$ $E\left[X_{i}-\mu\right]=0$. By using the Continuous Mapping Theorem, $\left(\bar{X}_{n}-\mu\right)^{2} \rightarrow_{p} 0$. In addition, $n /(n-1) \rightarrow_{p} 1$. So, by the Slutsky theorem, $s^{2} \rightarrow_{p} \sigma^{2}$. So $\hat{\mu}$ and s^{2} are consistent for μ and σ^{2} correspondingly.

1.2.2 Asymptotic Normality

We say that $\hat{\theta}$ is asymptotically normal if there are sequences $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{r_{n}\right\}_{n=1}^{\infty}$ and constant σ^{2} such that $r_{n}\left(\hat{\theta}-a_{n}\right) \Rightarrow N\left(0, \sigma^{2}\right)$. Then r_{n} is called the rate of convergence, a_{n} - the asymptotic mean, and $\sigma^{2}-$ the asymptotic variance. In many cases, one can choose $a_{n}=\theta$ and $r_{n}=\sqrt{n}$. We will use the concept of asymptotic normality for confidence set construction later on. For now, let us consider an example.

Example Let X_{1}, \ldots, X_{n} be a random sample from some distribution with mean μ and variance σ^{2}. Let $\hat{\mu}$ and s^{2} be the sample mean and the sample variance correspondingly. Then, by the Central limit theorem, $\sqrt{n}(\hat{\mu}-\mu) \Rightarrow N\left(0, \sigma^{2}\right)$. As for s^{2},

$$
\sqrt{n}\left(s^{2}-\sigma^{2}\right)=(n /(n-1))\left[\sum_{i=1}^{n}\left(\left(X_{i}-\mu\right)^{2}-\sigma^{2}\right) / \sqrt{n}-\left(\sqrt{n}\left(\bar{X}_{n}-\mu\right) / n^{1 / 4}\right)^{2}\right]+(\sqrt{n} /(n-1)) \sigma^{2}
$$

By the Central limit theorem, $\sum_{i=1}^{n}\left(\left(X_{i}-\mu\right)^{2}-\sigma^{2}\right) / \sqrt{n} \Rightarrow N\left(0, \tau^{2}\right)$ with $\tau^{2}=E\left[\left(\left(X_{i}-\mu\right)^{2}-\sigma^{2}\right)^{2}\right]$. Note that $\tau^{2}=\mu_{4}-2 \sigma^{2} E\left[\left(X_{i}-\mu\right)^{2}\right]+\sigma^{4}=\mu_{4}-\sigma^{4}$ with $\mu_{4}=E\left[\left(X_{i}-\mu\right)^{4}\right]$. By Slutsky theorem, $\sqrt{n}\left(\bar{X}_{n}-\mu\right) / n^{1 / 4} \rightarrow_{p} 0$. In addition, $(\sqrt{n} /(n-1)) \sigma^{2} \rightarrow_{p} 0$. So, by the Slutsky theorem again, $\sqrt{n}\left(s^{2}-\sigma^{2}\right) \Rightarrow N\left(0, \tau^{2}\right)$.

MIT OpenCourseWare
https://ocw.mit.edu

14.381 Statistical Method in Economics

Fall 2018
For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

