
Lecture 8 

Testing Concepts. 

1 Hypotheses 

Hypotheses are some statements about population distribution, which are either true or untrue for the given 

population. 

Example For example, let X1, ..., Xn be a random sample from distribution N(µ, σ2) with σ2 known and 

µ ∈ M. Suppose our hypothesis is that µ ∈ M1 for some M1 ⊂ M, i.e. M1 is some subset of M. It is 

called the null hypothesis. It is denoted as H0 : µ ∈ M1. Then the alternative hypothesis is that µ /∈ M1, 

i.e. µ ∈ M\M1. It is denoted as Ha ∈ M\M1. = {µ : µ ≤ µ0} and M = R, then : µ / For example, if M1 

H0 : µ ≤ µ0 and Ha : µ > µ0. Or, as another example, if M1 = µ0 , then H0 : µ = µ0 and Ha : µ ≠ µ0. 

If a hypothesis uniquely identi˝es the distribution of the data, it is called simple. Otherwise, the hy-

pothesis is called composite. In the the second example above, the null hypothesis is simple, while the 

alternative is composite. It is customary to mention both the null and the alternative hypotheses since the 

full parameter space M is often unspeci˝ed. 

2 Testing 

We observe a sample from a population and, based on this sample, create a test. Our test is intended to 

decide whether we accept the null hypothesis or reject it in favor of the alternative. Some people argue that 

instead of word �accept� it is more appropriate to say �do not reject�. We are not going to emphasize this 

di˙erence here. 

2.1 Critical region 

Let X denote our data. Then any test consists of the critical region C, which is a function of our null and 

alternative hypotheses, such that we accept the null hypothesis if X ∈ C and reject it if X ∈/ C. For example, ∑n 
if our data is X = (X1, ..., Xn), then the critical region might be C = { Xi < δ} for some δ ∈ R. The i=1 

value δ in this example might depend both on the null and on the alternative. 

In testing, four situations are possible. If H0 is true and we accept it, then it is a correct decision. If H0 

is true but we reject it, then it is a type 1 error. If H0 is false but we accept it, then it is a type 2 error. If 
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H0 is false and we reject it, then it is a correct decision again. So, in addition to correct decisions, there are 

errors of two types. 

2.2 Size and power trade-o˙ 

The probability of a type-1 error is called the size of the test. 

Example (cont.) In the example above, suppose our null hypothesis is H0 : µ = µ0 and our alternative is 

Ha : µ > µ0. Then the natural test is to accept the null hypothesis if the data belongs to the critical region ∑n 
C = { Xi < δ}. Then i=1 

n∑ √ √ √ 
Pµ0 { Xi ≥ δ} = Pµ0 { n(Xn − µ0)/σ ≥ n(δ/n − µ0)/σ} = 1 − Φ( n(δ/n − µ0)/σ), 

i=1 

which is a decreasing function of δ. If δ is large, then size of the test is small, which is good. Please note 

that the size is calculated at the null value (often called �under the null�). 

What is the probability of a type-2 error? If true parameter value µ > µ0, then 

n∑ √ 
Pµ( Xi < δ) = Φ( n(δ/n − µ)/σ). 

i=1 

First, notice that it is a function of true µ. Second, if δ is large, then the probability of a type-2 error is 

large as well, which is bad. 

Thus, there is a trade-o˙ between the probability of a type-1 error and the probability of a type-2 error. 

This trade-o˙ exists in most practically relevant situations. Before we consider how one should choose the 

test in light of this trade-o˙, the introduction of some additional concepts is necessary. 

The Power of the test is de˝ned as the probability of correctly rejecting the null hypothesis. Thus, the 

power of the test is de˝ned as 1 minus the probability of a type-2 error. Apparently, the power of the test 

depends on the true parameter value. So, power is usually considered to be a function of the true parameter 

value on the set of alternatives. 

The size of the test also depends on the true parameter value when the null hypothesis is composite. But, 

instead of considering the size of the test as a function of the true parameter value, the concept of the level 

of the test is used. We say that the test has level α if for any true parameter value in the null hypothesis, 

the size is not greater than α. The level of the test is de˝ned as the maximum of the size over all possible 

true parameter values in the null hypothesis. In the example above, the level of the test is sup size(µ). µ∈M1 

Once we have some notion of the power of the test and its level, let us consider how to choose the test. 

Common practice is to ˝x the level of the test (usually, it is 1, 5, or 10%) and then to choose a test with as 

much power as possible among all tests of a given level. In this sense the null and the alternative are not 

treated equally. 

Example (cont.) Let us return to our example with gaussian sample with known variance, where H0 : ∑ 
µ = µ0 and Ha : µ > µ0. Suppose we want a test with level 5%. We wish to reject the null when Xi 
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∑n 
is large (that is, the critical region is of the form C = { Xi < δ} ). We equivalently may construct i=1 

statistics as follows: √ 
n ( ) 

¯ Z = Z(X, µ0) = X − µ0 ∼ N(0, 1) under the null. 
σ 

This is often called a Z−statistic. Let Z0.95 denote the 95%-quantile of a standard normal distribution. 
√ 

Then n(δ/n − µ0)/σ = Z0.95 or, our test will accept the null if Z < Z0.95. This is the test with exact 

(˝nite-sample) size 5%. 

Since the power of the test depends on the true parameter value, it is possible that one test has maximal 

power among all tests with a given level at one parameter value, while another test has maximal power at 

some other parameter value. So it is possible that there is no uniformly most powerful test. In this situation 

the researcher should consider some additional criteria to choose a test. This observation explains a wide 

variety of tests suggested in the statistics and econometrics literature. However, we should note that there is 

an important class of problems where uniformly most powerful tests do exist. We will discuss it next time. 

2.3 P-value 

The result of any test is either acceptance or rejection of the null hypothesis. At the same time, it would be 

interesting to know to what extent we are sure about the result of the test. The concept of the p-value gives 

us such a measure. The p-value is the probability (calculated under the null) of obtaining a sample at least 

as adverse to the null hypothesis as given. Notice that the p-value is a random variable. 

Example (cont.) Let z = Z(x, µ0) be the value of the Z-statistic, as de˝ned above, that we see in our 

data set 

p − value = P {N(0, 1) > z} = 1 − Φ(z) . 

Note again, that it is a function of z, and thus is a random variable. By construction, our test rejects the 

null if the p-value is smaller than 0.05. 

If the p-value is much smaller than 0.05, then we can be quite sure that the null hypothesis does not hold. 

If the p-value is close to 0.05, then we are not so sure. Moreover, reporting the p-value has the advantage 

that, once the p-value is reported, any researcher can decide for himself whether he or she accepts or rejects 

the null hypothesis depending on his/her own favorite level of the test. 

Let us now emphasize some frequent misunderstandings about the concept of the p-value. First, a p-

value is not the probability that the null is true. There is no such probability at all since parameters are 

not random according to the frequentist (classical) approach. Second, the p-value is not the probability of 

falsely rejecting the null. This probability is measured by the size of the test. Third, one minus p-value is 

not the probability of the alternative being true. Again, there is no such probability since parameters are 

not random. Finally, the level of the test is not determined by a p-value. Instead, once we know the p-value 

of the test, the level of the test determines whether we accept or reject the null hypothesis. 

Example. Let X1, ...Xn be a random sample from an N(µ, σ2) distribution. The null hypothesis, H0, is 

that σ2 = σ0
2 . The alternative hypothesis, Ha, is that σ

2 < σ0
2 . Note that both hypotheses are composite 
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2 since they contain all possible values of µ. Let us construct a test based on sample variance s . We know 

that (n − 1)s2/σ2 ∼ χ2(n − 1). Since small values of (n − 1)s2/σ2 are a sign in favor of the alternative, our 0 

critical region should take the form C = {(n − 1)s2/σ0
2 > k}. Under H0, (n − 1)s2/σ0

2 ∼ χ2(n − 1). Then a 

test with level, say, 5%, accepts the null hypothesis if (n − 1)s2/σ0
2 > χ2

0.05(n − 1), where χ0
2 
.05(n − 1) denotes 

the 5%-quantile of χ2(n − 1). What is the power of this test? Let σ2 < σ0
2 . Then 

Pσ2 {(n − 1)s 2/σ0
2 ≤ χ0

2 
.05} = Pσ2 {(n − 1)s 2/σ2 ≤ (σ0

2/σ2)χ0
2 
.05} = Fχ2(n−1)((σ0

2/σ2)χ2 
0.05), 

where Fχ2(n−1) denotes the cdf of χ
2(n − 1). So the power of the test increases as σ2 decreases. Suppose 

2 n = 101, σ2 = 1, and we observe s = 0.9. What is the p-value of our test? Let A ∼ χ2(n − 1). Then the 0 

p-value equals 

P {A ≤ (n − 1)s 2/σ0
2} = Fχ2(n−1)((n − 1)s 2/σ0

2) = Fχ2 (100)(100 · 0.9/1) = Fχ2(100)(90) ≈ 0.25. 

Thus, the test with level 5% does not reject the null hypothesis. 

3 Pivotal Statistics 

By de˝nition, a statistic is called pivotal if its distribution is independent of unknown parameters. Pivotal 

statistics are useful in testing because one can calculate quantiles of their distributions and, thus, critical 

values for tests based on these statistics. For example, (n − 1)s2/σ0
2 from the example above is pivotal under 

the null since its distribution does not depend on µ. 

3.1 Asymptotic tests 

Example. Test of the mean. Let X = (X1, ..., Xn) be a random sample from some unknown distribution 

with ˝nite second moment. The null hypothesis is that H0 : EXi = µ0. The alternative is that Ha : EXi ≠ 
µ0. Both hypotheses are composite. Let us construct a test based on |Xn − µ0|. Large values of |Xn − µ0| 
are a sign in favor of the alternative. Thus, our critical region should take the form C = {|Xn − µ0 ≤ δ} for 

some δ > 0. It is impossible to ˝nd the exact distribution of the test statistic in this case but possible to 

˝nd an asymptotically pivotal test statistic, that is a test statistic with an asymptotic distribution that does 

not depend on any unknown parameter. 
√ 

Under the null, n(Xn − µ0) ⇒ N(0, V ar(Xi)). We also have a consistent estimate for V ar(Xi) which 
2 is s . Let us de˝ne √ 

t = (Xn − µ0)/ s2/n ⇒ N(0, 1) if the null is true. 

This is a well-known t-statistics. We reject the null at 5% level if |t| > 1.96 and p − value = 2Φ(−|t|). This 
test has asymptotic size 5%. That is, 

PH0 {reject} → 0.05 as n → ∞. 
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Example As another example, let X1, ..., Xm and Y1, ..., Yn be independent random samples from two 

di˙erent distributions. We want to test null hypothesis, H0, that EXi = EYi. against the alternative, Ha, 

that EXi > EYi. A natural place to start is to note that if the null hypothesis is true, then Xm should be 

close to Y n with high probability. But Xm − Y n ∼ N(0, σ2/m + σ2/n) with σ2 and σ2 unknown variances 

where s and s are sample variances. The exact distribution of the t-statistics here is not pleasant. Instead, 

x y x y 

of the two distributions. So consider 
Xm − Y n 

t = √ , 
s2 /m + s2 /n x y 

2 2 
x y 

let us use asymptotic theory. As an exercise, prove that if both n and m increase to in˝nity we have 

t ⇒ N(0, 1). So we can use the quantiles of a standard normal distribution to form a test with size 

approximately equal to that of the required level of the test. This gives us a test of �asymptotically the 

correct size�. 

3.2 Bootstrap 

Example. Test of the variances. Let X = (X1, ..., Xn) be a random sample from some unknown 

distribution with ˝nite fourth moment. The null hypothesis is that H0 : V ar(Xi) = σ0
2 . The alternative is 

that Ha : V ar(Xi) ̸= σ0
2 . Both hypotheses are composite. We obviously, want to use statistic based on the 

sample variance s2 but without normality assumption the exact distribution of s2 is unavailable. We know, 
2 that s is consistent and is asymptotically gaussian (think why), but we may be lazy to ˝gure out what is 

√ 
the asymptotic variance of it. Imagine we want to use statistic z = n(s2 − σ0

2) and reject when it is too 

large or too small. We may do the following: 

• For b = 1, ..., B repeat: 

� Draw i.i.d. sample X∗ = (X∗ , ...., X∗ ) from a set of initial observations {X1, ..., Xn} with b 1b nb 

replacement; 

2 � Calculate s to be a sample variance of X∗ 
b b ; 

√ 
2 � Calculate zb = n(s − s2); b 

• Order zb in ascending order: z(1) ≤ ... ≤ z(B); 

• For test of size α, if z([ α B]) < z < z([(1− α )B]) accept the null, otherwise reject. 2 2 

√ 
Think why this procedure would give asymptotically level-α test. We know that under the null z = n(s2 − 

σ0
2) ⇒ N(0, V ), where the asymptotic variance V can be calculated using CLT and delta-method. It depends 

on the ˝rst three moments of random variable Xi (which are unknown). 

For the bootstrapped sample the variance equals to the sample variance and four ˝rst moments are 
√ ∗ consistent estimators of the population ˝rst four moments. We have z = n((s ∗)2 − s2) ⇒ N(0, V ∗) and 

V ∗ →p V 2 . So the bootstrapped distribution of z-statistic will asymptotically be the same as the true 

asymptotic distribution of z-statistic. 
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