## Problem Set 2

You should hand in the solution for problem 4. Problems 1-3 are for practice. One of the problems from the problem sets will be on the mid-term exam.

1. Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid observations. Find minimal sufficient statistics
(a) $f(x \mid \theta)=\frac{2 x}{\theta^{2}}, 0<x<\theta, \theta>0$;
(b) $f(x \mid \theta)=e^{-(x-\theta)} \cdot \exp \left\{-e^{-(x-\theta)}\right\},-\infty<x<\infty,-\infty<\theta<\infty$;
(c) $f(x \mid \theta)=\frac{2!}{x!(2-x)!} \theta^{x}(1-\theta)^{2-x}, x \in\{0,1,2\}, 0 \leq \theta \leq 1$.
2. Let $X_{1}, \ldots, X_{n}$ be a random sample from a Poisson distribution with parameter $\lambda$

$$
P\{X=j\}=\frac{e^{-\lambda} \lambda^{j}}{j!} \quad j=0,1, \ldots
$$

(a) Find a minimal sufficient statistic.
(b) Assume that we are interested in estimating probability of a count of zero $\theta=P\{X=0\}=\exp \{-\lambda\}$. Find an unbiased estimator of $\theta$. Hint: $\theta=P\{X=0\}=E \mathbb{I}\{X=0\}$.
(c) Is the estimator in (b) a function of a minimal sufficient statistics? Modify the estimator to make sure it is a function of a minimal sufficient statistics, while it is still unbiased. You may try to do analytical derivation (it can be done here). However, if it is too hard, then explain a Monte-Carlo procedure that you may use instead.
3. Assume $X_{1}, \ldots, X_{n}$ are iid with mean $\mu$ and variance $\sigma^{2}$ (both unknown). Let us estimate mean by

$$
\hat{\mu}=\sum_{i=1}^{n} \omega_{i} X_{i}
$$

(i) Under what condition is $\hat{\mu}$ unbiased?
(ii) Among all unbiased $\hat{\mu}$ find the one with the smallest variance.
(iii) What $\left\{\omega_{i}\right\}$ whould lead to the smallest MSE?
4. (Required problem) Suppose that the random variables $Y_{1}, \ldots, Y_{n}$ satisfy

$$
Y_{i}=\beta x_{i}+e_{i}, i=1, \ldots, n,
$$

where $x_{1}, \ldots, x_{n}$ are fixed constants and $e_{1}, \ldots, e_{n}$ are i.i.d. normals with mean 0 and variance $\sigma^{2}$ (variance is unknown).
(a) Find a two-dimensional sufficient statistic for $\left(\beta, \sigma^{2}\right)$.
(b) Find the MLE of $\beta$ and show that it is unbiased.
(c) Find the distribution of the MLE of $\beta$.
(d) Is $\hat{\beta}_{1}=\frac{\sum_{i=1}^{n} Y_{i}}{\sum_{i=1}^{n} x_{i}}$ an unbiased estimator for $\beta$ ? Find its variance.
(e) Is $\hat{\beta}_{2}=\frac{1}{n} \sum_{i=1}^{n} \frac{Y_{i}}{x_{i}}$ an unbiased estimator for $\beta$ ? Find its variance.
(f) Which of the three estimator $\hat{\beta}_{M L E}, \hat{\beta}_{1}$ and $\hat{\beta}_{2}$ has the smallest variance? Hint: you may need the following inequalities. For any numbers $a_{1}, . ., a_{n}$ we have

$$
\left(\sum_{i} a_{i}\right)^{2} \leq n \sum_{i} a_{i}^{2} \quad \text { and } \quad\left(\frac{1}{n} \sum_{i} \frac{1}{a_{i}^{2}}\right)^{-1} \leq \frac{1}{n} \sum_{i} a_{i}^{2}
$$

MIT OpenCourseWare
https://ocw.mit.edu

### 14.381 Statistical Method in Economics

Fall 2018
For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

