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Abstract. We use binary regressions to model conditional distributions of real outcomes
given covariates and develop models for counterfactual analysis. An application to (predic-
tive) gender discrimination effects in the labor market finds that these effects explain most
of the observed difference between the distribution of wages for men and women. An ap-
plication to racial differences in mental ability of young children finds that two thirds of the
gap between black and white children is explained by differences in background character-
istics, but the remaining unexplained gap is still significant in both economic and statistical
terms.

1. Distribution Regression

We use the binary regression framework to model and estimate the conditional distri-
bution of an outcome given covariates. The outcome is a real-valued variable and can be
either of the following:

• continuous (log wages),
• count (number of patents),
• nonnegative (durations, capital levels),
• discrete (rounded wages) or binary as in the previous lecture.

The key, simple observation is that the conditional distribution of the outcome Y given
the set of covariates X can be expressed as

FY X(y .| | x) = E[1{Y ≤ y} | X = x]

Accordingly, even when the outcome is not binary, we can always construct a collection of
binary response variables, which record the events that the outcome falls bellow a set of
thresholds:

1{Y ≤ y}, y ∈ T ⊂ R,
where T is countable subset of R. For estimation and other practical purposes, we take T
to be a finite collection of grid points. We can then use binary regressions for a collection
of binary response variables to model the conditional distribution of Y given X ,

FY |X(y | x) = P(Y ≤ y | X = x) = Fy(B(x)′β(y)),
1
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where Fy is a link function, which may vary with the threshold y, B(X) is a dictionary of
transformations of X including a 1 as the first entry, and β(y) is the parameter vector that
may vary with the threshold y. This is the distribution regression model.

The distribution regression model is quite flexible and nests a variety of classical models
for conditional distribution functions.
Example 1 (Classical Normal Regression Model). In the classical normal regression model,
Y | X ∼ N(B(X)′γ, σ2), the conditional distribution of Y given X is

FY |X(y | x) = Φ((y −B(x)′γ)/σ),

where Φ is the standard normal distribution. This conditional distribution is a special
case of the distribution regression model with Fy equal to the probit link Φ, and β(y) =
(y − γ1,−γ′ 1)′, for γ = (γ1, γ

′
1)′. Note that the slopes here don’t vary with y. �− −

Example 2 (Cox Proportional Hazard Model). The Cox duration regression model is:
FY |X(y | x) = 1− exp(− exp(t(y)−B(x)′γ)),

where t(·) is an unknown monotonic transformation, is a common approach to model
conditional distributions in duration and survival analysis. It has also been used to model
non-negative outcomes, such as capital in (S, s) models and wages. It corresponds to the
following location-shift representation:

t(Y ) = B(X)′γ + V,

where V has an extreme value distribution and is independent of X . The model is called
proportional hazard model, because the hazard rate,

∂
h(y | x) =

∂y
d ln(1− FY |X(y | x)) = −∂t(y)

exp(t(y)) exp(B(x)′γ),
∂y

depends proportionally on exp(B(x)′γ). The conditional distribution is a special case
of the distribution regression model with Fy equal to the complementary log-log link,
Fy(u) = 1 − exp(− exp(u)), and β(y) = (t(y) − γ1,−γ′ 1)′, for γ = (γ , γ′ )′. Note that− 1 −1

the slopes here don’t vary with y, while distributional regression allows for slopes to be
varying with y. �

Example 3 (Poissson Regression Model). The Poisson distribution is frequently used to
model count variables taking values in 0, 1, 2, .... In the conditional (regression) version of
the Poisson model, the conditional distribution of the count variable Y given X takes the
form:

FY (y|X | x) =
∑y kexp (B(x)′γ) exp (− exp (B(x)′β))

k=0

= Q y, exp B(x)′γ
k!

where Q called the incomplete Gamma function. Thus, the distribution

(
reg

(
ression

))
model

with link function Fy (u) =Q (y, exp(u)) and β(y) = γ nests the Poisson regression model.
The Poisson regression model assumes that the same index governs the whole distribu-
tion. This assumption has been often challenged in applications. The zero-inflated Poisson
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regression model makes one step in the direction of a more flexible model by allowing the
coefficients to be different at 0. The distribution regression model does not restrict the
heterogeneity of the coefficients at any level. �

Given the conditional distribution we can also look at the conditional quantiles:
FY
←
X(u | x), u ∈ [0, 1],|

where← denotes the left-inverse of the map y 7→ FY X(y | x) on T . Here we define the|
left-inverse of a function G : T → [0, 1] on T as

G←(u) := inf{t ∈ T : G(t) ≥ u} ∧ sup{t ∈ T}. (1.1)
Given a graph of a distribution function t 7→ G(t) we can obtain the graph of the quantile
function u 7→ G←(u) by simply flipping the axes and mirroring the resulting image.

There are many ways to estimate the distribution regression models. Here we focus on
the following method. We can estimate the conditional distribution by:

ˆ ˆFY X(y|x) = Fy(B(x)′β(y)), y| ∈ T,

where for each y ∈ ˆT the estimator β(y) is the maximum likelihood estimator,

β̂(y) ∈ arg max En[1(Yi ≤ y) lnFy(B(Xi)
′b(y)) + 1(Yi > y) ln(1− Fy(B(Xi)

′b(y)))],
b(y)∈B

where B is the parameter space for ˆβ(y). For example, β(y) is the probit estimator if we
use the normal link Fy = Φ or the logit estimator if we use the logistic link Fy = Λ. We can
handle inference on y 7→ ˆFy(B(x)′β(y)) for y ∈ T by using the delta method in conjunction
with the GMM formulation of the problem. Indeed, we can view estimation of

θ0 = vec(β(y) : y ∈ T )

as a GMM problem with the score:
g(Zi, θ) = vec (gy(Zi, b(y)) : y ∈ T ) ,

∂
gy(Zi, b(y)) =

{
1(Yi ≤ y) lnFy(B(Xi)

′b(y)) + 1(Yi > y) ln(1− Fy(B(Xi)
′b(y))) ,

∂b(y)

which simply stacks the scores of many binary regressions. The joint parameter vector

}
is

θ = vec(b(y) : y ∈ T ), which simply stacks the parameters of many binary regressions. The
map y 7→ ˆ ˆFy(B(x)′β(y)), y ∈ T , is a smooth transformation of the estimators β(y), y ∈ T ,
so the delta method delivers the large sample properties of the estimators Fy(B(x)′β̂(y)),
y ∈ T . This also means that we can use the bootstrap for inference.

In practice, the map 7→ ′ ˆy Fy(B(x) β(y)) may be non-monotone, in which case we can
rearrange it into monotone function by simply sorting the values of function in a nonde-
creasing order. This typically improves the finite-sample properties of the estimator. We
discuss the rearrangement procedure in Section 3.2.
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2. Unconditional and Counterfactual Distributions and Quantiles

Once we get the conditional distribution, we can construct an unconditional distribution
of the form:

F (y) =

∫
FY x|X(y|x)dM( ), y ∈ T,

which is simply the conditional distribution integrated against a marginal distribution M
for the covariate values. When M is the distribution of X , namely M = FX , we obtain the
marginal distribution of Y :

F (y) = FY (y), y ∈ T.
We can also look at the marginal quantile functions Q = F← which is the left-inverse of
the distribution function y 7→ F (y) on T , as defined in (1.1).

When M is not the distribution of X , then F is a counterfactual distribution which
corresponds to a sampling experiment where covariates X ′ are sampled from M , but
outcomes are sampled from the conditional distribution FY |X(·|X ′).

This construction is very useful for counterfactual analysis. For example, let FX denote
the distribution of job-relevant characteristics (education, experience, etc.) for men

k

when
k = m, and women when k = w. Let FYj |X
given job-relevant characteristics for group

j
denote the conditional distributions of wages
j ∈ {w,m}. This conditional distribution de-

scribes the stochastic wage schedule that a given group faces. Using these distributions we
can construct F j k , the distribution of wages for group k facing group j wage schedule as〈 | 〉

F j k (y) =

∫
FYj Xj

(y x| |x)dF (〈 〉 | Xk
), y ∈ T.

For example, F m m is the distribution of wages for men who face men’s wage schedule,〈 | 〉
andF w w is the distribution of wages for women who face women’s wage schedule. These〈 | 〉
are observed distributions. We can also look at F m w , the counterfactual distribution of〈 | 〉
wage for women if they would face the men’s wage schedule. We can interpret F〈m|w as〉
the distribution of wages for women in the absence of “gender discrimination”, although
we do have to be careful and say that this is just a predictive distribution, which does not
have a causal interpretation without further (strong) assumptions.

We can use the counterfactual distributions to decompose the differences in the ob-
served wage distributions:

F m m − F =〈 | 〉 〈w|w (F F〉 m|m〉 − )〈 〈m|w〉

composition effect

+ (F〈m|w〉 − F〈w|w〉),
discrimination effect

where the first term on the right is the composition effect, which results from the popula-
tions of men and women having different distributions of job market characteristics, and
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the second is the discrimination effect or price effect, which results from women facing differ-
ent wage schedules than men. Analogous decomposition could be made for the observed
quantile functions:

Q m m −Q w w = (Q m m −Q m w )〈 | 〉 〈 | 〉 〈 | 〉 〈 | 〉

composition effect

+ (Q〈m|w〉 −Q〈w|w〉) . (2.1)
discrimination effect

What we see above are the distribution and quantile versions of the Oaxaca-Blinder de-
composition.

In the empirical example based on U.S. data, which we describe below, we find that
the distributions of wages for men and women are different, with the distribution of
wages for men being shifted to the right by 20% or 30% along the horizontal axis, or the
quantile function for men being shifted up by 20% or 30%. Almost all of the difference
can be attributed to the discrimination/price effect. The composition effect is close to
zero and is slightly negative due to the fact that men’s characteristics distribution is
slightly worse than women’s characteristic distribution.

The estimation of the counterfactual distributions can be done using the plug-in princi-
ple:

ˆ
∫

ˆ ˆF j k (y) = FYj Xj
(y|x)dFXk

(x), y ∈ T, (2.2)〈 | 〉 |

where the conditional distribution estimator F̂Yj Xj
is the distribution regression estimator|

applied to observations of (Y,X) for group j, and the covariate distribution estimator F̂X

is the empirical distribution of observations of X for group k. Just like other estimation
k

problems we have seen, this estimator can be treated as the GMM estimator by simply
stacking together various scores corresponding to different steps of the procedure. This
also means that we can use the bootstrap as a practical inference tool.

In practice, the map y 7→ F̂ j y|k ( ) may be non-monotone if y〈 〉 7→ F̂Y |X (y|x) is non-
monotone, but we can rearrange it into monotone function by simply sorting

j j

the values of
function in a nondecreasing order. This typically improves the finite-sample properties of
the estimator as we show in Section 3.2.

3. Generic Inference Method for Distributions and Quantiles

3.1. The Method. LetD denote the set of weakly increasing functions, mapping T to [0, 1].
We will call elements of this set “distribution functions”, albeit some of them need not be
proper distribution functions. Let y 7→ F (y) in D denote some target distribution func-
tion. This target could be a conditional distribution function, an unconditional distribution
function, or a counterfactual distribution function. Another target will be the left-inverse
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a 7→ F←(a) of F on T , which we can call the “quantile function” of F , where the left-
inverse was defined in (1.1). We construct confidence sets for the distribution and quantile
functions.

The idea of the approach given here is as follows:

1. Construct confidence bands I = [L,U ] for F based upon bootstrapping an es-
timator F̂ . We can impose logical shape restrictions on these estimator and
bands if necessary.

2. Convert these confidence bands into confidence bands for the quantile function
defined as F← by taking the inverse I← = [U←, L←] of the bands I = [L,U ].

Consider a confidence band I = [L,U ] for F , with lower and upper bands L and U .
Specifically, given two functions y 7→ U(y) and y 7→ L(y) in the set D such that L ≤ U ,
pointwise, we define a band I = [L,U ] as the collection of intervals

I(y) = [L(y), U(y)], y ∈ T.
We say that I covers F if F ∈ I pointwise namely F (y) ∈ I(y) for all y ∈ T . If U and L
are some data-dependent bands, we say that I = [L,U ] is a confidence band for F of level
p, if I covers F with probability at least p. Below we provide a bootstrap algorithm for
computing a confidence band. Such method works if F̂ , the estimator of F , is sufficiently
regular. Examples include estimators discussed in the previous sections.

Our ultimate goal is to construct a confidence set for F← from a generic confidence
set [L,U ] for F . The following result provides a confidence set I←. Here, we say that a
collection of sets I← = {I←(a), a ∈ [0, 1]} covers F← if F←(a) ∈ I←(a) for each a ∈ [0, 1].

Theorem 1 (Generic Bands for Quantile Functions). Consider a distribution function F and
band functions L and U in the class D.

(1) If F is covered by the band I := [L,U ], then the quantile function F← is covered by the
band I← defined by

I←(a) := [U←(a), L←(a)].

(2) Thus if the distribution function F is covered by I with probability at least p, then the
quantile function F← is covered by I← with probability at least p.

Proof. The result is immediate from the definition of the left inverse: For any a ∈ A,
since L(y) ≤ F (y) for each y ∈ T , and F and L are in D,

F←(a) = inf{y ∈ T : F (y) ≥ a} ∧ supT

≤ inf{y ∈ T : L(y) ≥ a} ∧ supT = L←(a).
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Analogously, conclude that F←(a) ≥ U←(a). �

The band I← can be narrowed without affecting coverage by exploiting the support re-
strictions. Suppose that T is the support of the distribution function F (and not merely
a set of grid points at which we measure F ). This is relevant, for example, when out-
comes are discrete or counts. Then it makes sense to exploit the support restriction that
F←(a) ∈ T by intersecting the confidence sets for F←(a) with T . Clearly this won’t affect
the coverage properties of the sets.

Corollary 1 (Imposing Support Restrictions). Consider the set Ĩ← defined by pointwise inter-
section of I← with T , namely Ĩ← ˜(a) := I←(a) ∩ T. Then, I← ⊆ I← pointwise, and if I← covers
F← then so does Ĩ←.

The corollary is immediate because pointwise intersection of I← with the set T does not
change the coverage property, since F← only takes values in T .

Figure 1 illustrates the construction of bands using Theorem 1. It shows an F : [0, 10] 7→
[0, 1] covered by a band I = [L,U ]. It also shows that the inverse map F← : [0, 1] 7→ [0, 10]
is covered by the inverted band I← = [U←, L←]. The band I← is easy to obtain but does
not exploit the fact that the support of the distribution F in this example is the set T =

{0, 1, . . . , 10}. By intersecting I← with T for each a ∈ A = [0, 1] we obtain the band Ĩ←

which reflects such support restrictions.

3.2. Imposing Logical Shape Constraints. In many applications the point estimates F̂
and interval estimates [L′, U ′] for the target distribution F do not satisfy the logical mono-
tonicity or range restrictions, namely they don’t take values in the set D. Given such
an ordered triple L′ ≤ F̂ ≤ U ′, we can always transform it into another ordered triple
L ≤ F̌ ≤ U that obey the logical monotonicity and shape restrictions. For example, we
can set

F̌ = S ˆ(F ), L = S(L′), U = S(U ′), (3.1)
where S is the shaping operator that given a function f yields a mapping t 7→ S(f)(t) ∈ D
with

S(f) =M(0 ∨ f ∧ 1),

where the maximum and minimum are taken pointwise, and M is the rearrangement
operator that given a function f : T 7→ 1[0, 1] yields a map t 7→ M(f)(t) ∈ D.

The rearrangement operator is defined as follows. Let T be a countable set (in practice, a
finite set). Given f : T 7→ [0, 1], we first considerMf as a vector of sorted values of the set
{f(t) : t ∈ T}, where the sorting is done in a non-decreasing order. Since T is an ordered

1Other monotonization operators, such as the projection on the set of weakly increasing functions, can also
be used, as we remark further below.
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Figure 1. Top: the distribution function F defined over T = {0, 1, ..., 10}
and a confidence band I = [L,U ]. Both the distribution function and the
confidence bands are interpolated by piecewise constant outside T . Mid-
dle: the quantile function F← and the confidence band I← = [U←, L←].
Bottom: The support-restricted confidence band Ĩ← = I← ∩ T shown by
circles and the inverse F← shown by red balls; the red balls are encircled
because F← ∈ Ĩ←.
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set of the same cardinality asMf , we can assign the elements ofMf to T in one-to-one
manner: to the k-th smallest element of T we assign the k-th smallest element ofMf . The
resulting mapping t 7→ Mf(t) is the rearrangement map.

The following lemma shows that shape restrictions improve the finite-sample properties
of the estimators and confidence bands.

Lemma 1 (Shaping Improves Point and Interval Estimates). The shaping operator S

(a) is weakly contractive under the max distance:

‖S(A)− S(B)‖ ≤ ‖A−B‖ , for any A, B: T∞ ∞ → [0, 1],

(b) is shape-neutral,
S(F ) = F for any F ∈ D,

(c) preserves the partial order:

A ≤ B =⇒ S(A) ≤ S(B), for any A, B: T → [0, 1].

Consequently,

(1) the re-shaped point estimate constructed via (3.1) is weakly better than the initial estimate
under the max distance:

‖F̌ − F‖∞ ≤ ‖F̂ − F‖ ,∞

(2) the re-shaped confidence band constructed via (3.1) has weakly better coverage than the
initial confidence band:

P(L′ ≤ F ≤ U ′) ≤ P(L ≤ F ≤ U),

(3) and re-shaped confidence band constructed via (3.1) is weakly shorter than the original
confidence band under the max norm,

‖U − L‖∞ ≤ ‖U ′ − L′‖ .∞

The band [L,U ] is weakly better than the original band [L′, U ′], in the sense that coverage
is preserved while the width of the confidence band is weakly shorter.

Remark 1 (Isotonization is Another Option). An alternative to rearrangement is to use the
isotonization, which projects a given function on the set of weakly increasing functions
that map T to [0, 1]. This also has the improving properties stated in Lemma 1. In fact any
convex combination between isotonization and rearrangement has the improving proper-
ties stated in Lemma 1. �

Remark 2 (Shape Restrictions on Confidence Bands by Intersection). An alternative way
for imposing shape restrictions on the confidence band, is to intersect the initial band
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[L′, U ′] with the set of weakly increasing functions WI that map T to [0, 1]. That is, we
simply set

[LI , U I ] = WI ∩ [L′, U ′] = {w ∈WI : L′(y) ≤ w(y) ≤ U ′(y), ∀y ∈ T}.
Thus, U I is the greatest weakly increasing minorant of 0 ∨ U ′ ∧ 1 and LI is the smallest
majorant of 0 ∨ L′ ∧ 1. This approach gives the tightest confidence bands, in particular

[LI , U I ] ⊆ [L,U ].

However, this construction might mis-behave under misspefication, where rearrangement
continues to deliver meaningful confidence sets. Imagine that we have constructed an es-
timator F̂ that is consistent for the target F , which is not monotone, i.e. F 6∈ D. Then if the
confidence bands [L′, U ′] are sufficiently tight, then we can end up with empty intersec-
tion bands, [LI , U I ] =

ˇ
∅. By contrast [L,U ] is non-empty and covers the probability limit

F ∗ = S(F ) of F , where the limit target F ∗ does belongs to D. �

3.3. The bootstrap algorithm. The following algorithm implements the ideas presented
above.

Algorithm 1 (Bootstrap Algorithm for Confidence Bands for F ). Given the ingredi-
ents above, we provide an explicit algorithm for the bootstrap construction of the
joint confidence band I = [L,U ] for (F (y))y∈T based on the bootstrappable estima-
tors ˆ(F (y))y∈T :

(1) Obtain many bootstrap draws of the estimator ˆ(F (y))y∈T ,
ˆ(F ∗(j)(y))y T , j = 1, . . . , B∈

where the index j enumerates the bootstrap draws.
(2) For each y in T compute the bootstrap variance estimate

B

ˆ ˆŝ2(y) = B−1
∑

(F (y)∗(j) − F (y))2,
j=1

(or use the estimate based on interquartile range).
(3) Compute the critical value

c(1− α) = (1− α)-quantile of
{ B

max |F̂ (y)∗(j) ˆ
∈

− F (y)|/ŝ(y)
y T

}
.

j=1

(4) Construct a preliminary (1− α)-level confidence band for (F (y))y as∈T

[L′(y), U ′ ˆ(y)] = [F (y)± c(1− α)ŝ(y)], y ∈ T.
(5) Impose the shape restrictions on ˆ ˇF and L′ and U ′ obtaining F , and L and U .

Report I = [L,U ] as a (1− α)-level confidence band for (F (y))y∈T .
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4. Generic Confidence Bands for Quantile Effects

Our next goal is to construct a confidence band for the quantile effect function a 7→
∆(a) defined by

∆(a) := F1
←(a)− F0

←(a),

corresponding to the difference of quantile functions of the two distribution functions
F0 and F1 with support sets T .

The basic idea is as follows:

1. Construct joint confidence bands for F0 and F1.
2. Convert these into confidence bands for F0

← and F1
← by inversion.

3. Contruct the confidence band for the quantile effect ∆ by taking the pointwise
Minkowski difference between the confidence bands for F1

← and F0
←.

Specifically, suppose we have the confidence bands I0
← for F0

← and I1
← for F1

←, which
jointly cover F0

← and F1
← with probability p. For example, we can construct these sets

using Theorem 1 in conjunction with the Bonferroni inequality.2 Algorithm 2 provides a
construction of the confidence bands that has joint coverage property and is less conser-
vative than using Bonferroni. Then we can convert these bands to confidence bands for ∆
by taking the pointwise Minkowski difference 	 of the pairs of intervals at each a treated
as sets of points. Recall that the Minkowski difference between two subsets V and U of a
vector space is V 	 U := {v − u : v ∈ V, u ∈ U}. Note that if V and U are intervals [v1, v2]
and [u1, u2], then

V 	 U = [v1, v2]	 [u1, u2] = [v1 − u2, v2 − u1].

Theorem 2 (Generic Bands for Quantile Effect Functions). Consider the distribution functions
F0 and F1 and the band functions L0, U0, L1 and U1 in the class D.

(1) If Fk is covered by Ik := [Lk, Uk] for k = 0 and k = 1, then the quantile effect function
∆ = F1

← − F0
← is covered by the band I∆

← = [U1
←, L←1 ] − [U0

←, L←0 ], where the minus
operator is defined by a pointwise Minkowski difference:

I∆
←(a) := [U1

←(a), L←1 (a)]	 [U0
←(a), L←0 (a)].

2The joint coverage of two confidence sets with marginal coverage probabilities p̃ is at least p = 2p̃− 1 by
Bonferroni inequality.
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(2) If the distribution functions F0 and F1 are jointly covered by I0 and I1 with probability at
least p, then the quantile effect function ∆ = F1

← − F0
← is covered by I∆

← with probability
at least p.

Proof. The results is immediate from the definition of the Minkowski sum. �

As in Theorem 1, we can narrow the band I← without affecting coverage by imposing
support restrictions on the bands for the quantile

∆
functions.

Corollary 2 (Imposing Support Restrictions). Consider the band Ĩ∆
← ˜= I1

← − Ĩ0
← defined by:

Ĩ∆
← ˜ ˜(a) := I1

←(a 	 ˜) I0
←(a), Ik

←(a) := {[Uk
←(a), L←k (a)] ∩ T}, k ∈ {0, 1}.

Then Ĩ∆
← ⊆ I∆

←, and if I∆
← covers ∆ then so does Ĩ∆

←.

Figure 2 shows bands for a pair of quantile functions together with bands for the quan-
tile effect function constructed using Theorem 2. The top plot shows the bands I0

← and I1
←

for the quantile functions F0
← and F1

←. The middle plot shows the band I∆ for the quantile
effect function ∆ = F1

←−F0
←, obtained by taking the Minkowski difference of I1

← and I0
←.

The bottom plot shows the confidence band Ĩ∆ for the quantile effect function ∆ resulting
from imposing the support constraints. As the Theorem 2 predicts, the quantile function
∆ is covered by the band I∆.

In what follows we write down an explicit algorithm that implements the proposal
above.

Algorithm 2 (Bootstrap Algorithm for Confidence Bands for Quantile Effects).

(1) Obtain many bootstrap draws of the estimator { ˆ(Fk(y))y∈T }k∈{0,1 ,}

{ ˆ(F
∗(j)

(y))k y , j = 1, . . . , B∈T }k∈{0,1}
where the index j enumerates the bootstrap draws.

(2) For each y in T and k ∈ {0, 1} compute the bootstrap variance estimate
B

ŝ2 ˆ (j) ˆ
k(y) = B−1

∑
(F (y)

∗ − Fk(y))2,k
j=1

(or use the estimate based on the interquartile range).
(3) Compute the critical value

c(1− α) = (1− α)-quantile of
{ B

| ˆ − ˆmax F )
k(y)∗(j Fk(y)|/ŝk(y)

}
.

y∈T,k∈{0,1} j=1
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Figure 2. Top: the two quantiles functions F0
← and F1

← and confidence
bands I0

← and I1
←. Middle: the quantile effect F1

←−F0
← and the confidence

band I∆
←. Bottom: the support restricted confidence band Ĩ∆

←.
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(4) Construct a preliminary (1 − α)-level joint confidence region for
{(Fk(y))y∈T }k∈{0,1 as}

[L′ ˆ
k(y), Uk

′ (y)] = [Fk(y)± c(1− α)ŝk(y)], y ∈ T, k ∈ {0, 1}.

(5) Impose the shape restrictions on F̂k and L′k and Uk
′ by setting:

ˇ ˆFk = S(Fk), [Lk, Uk] = [S(L′k),S(Uk
′ )].

(6) Report Ik = [Lk, Uk] for k ∈ {0, 1} as a (1 − α)-level joint confidence band for
(Fk(y))y∈T for k ∈ {0, 1}. Report Ik← = [Uk

←, L←k ] for k ∈ {0, 1} as a (1−α)-level
joint confidence band for (Fk

←(y))y∈T for k ∈ {0, 1}.
(7) Report

I∆
← = [U1

←, L←1 ]− [U0
←, L←0 ]

as a (1− α)-level confidence band for quantile effect.
(8) If necessary, impose support restrictions in the previous two steps, following

Corollaries 1 and 2.

5. Gender Wage Gap in 2012

To illustrate the use of the bands in practice we consider an application to gender wage
gap using data from the U.S. March Supplement of the Current Population Survey (CPU)
in 2012. We select white non-hispanic individuals, aged 25 to 64 years, and working more
than 35 hours per week during at least 50 weeks of the year. We exclude self-employed
workers; individuals living in group quarters; individuals in the military, agricultural or
private household sectors; individuals with inconsistent reports on earnings and employ-
ment status; and individuals with allocated or missing information in any of the variables
used in the analysis. The resulting sample consists of 29, 217 workers including 16, 690
men and 12, 527 of women. The variable of interest Y is the logarithm of the hourly wage
rate constructed as the ratio of the annual earnings to the total number of hours worked,
which is constructed in turn as the product of number of weeks worked and the usual
number of hours worked per week.3

In this application F0 and F1 correspond to observed and counterfactual distributions
of wages for women and men. Following Section 2, we denote these distributions by F ,〈j|k〉
where

F j k (y) =

∫
FYj Xj

(y|x)dFXk
(x), y〈 | 〉 | ∈ T,

for j, k ∈ {m,w}, where m and w refer to men and women, FY |X is the wage structure
in group j, and is

j j

FXk
the distribution of worker characteristics in group k. The worker

3This sample selection criteria and the variable construction follow [9].
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characteristicsX include 5 marital status indicators (widowed, divorced, separated, never
married, and married); 6 educational attainment indicators (0-8 years of schooling com-
pleted, high school dropouts, high school graduates, some college, college graduate, and
advanced degree); 4 region indicators (midwest, south, west, and northeast); and a quartic
in potential experience constructed as the maximum of age minus years of schooling minus
7 and zero, i.e., experience = max(age− education− 7, 0), interacted with the educational
attainment indicators.

We estimate F〈w of|w and F pirical〉 〈m m using the em distributions Y for women and| 〉
men. We estimate ˆF〈m F|w by (2.2), where〉 Y |X is the distribution regression estimator
with a logit link and a linear index in in

m m

X the sample of men. We use the empirical
distribution of X for women to estimate FXw . All the estimators use sampling weights to
account for nonrandom sampling in the March CPS.

Table 1. Descriptive Statistics

All Men Women

log wage 2.79 2.90 2.65
female 0.43 0.00 1.00

married 0.66 0.69 0.63
widowed 0.01 0.00 0.02
divorced 0.12 0.10 0.15

separated 0.02 0.02 0.02
never married 0.19 0.19 0.18

0-8 years completed 0.00 0.01 0.00
high school dropout 0.02 0.03 0.02

high school graduated 0.25 0.27 0.23
some college 0.28 0.27 0.30

college graduated 0.28 0.28 0.29
advanced degree 0.15 0.14 0.17

northeast 0.20 0.20 0.19
midwest 0.27 0.27 0.28

south 0.35 0.35 0.35
west 0.18 0.19 0.18

potential experience 18.96 19.01 18.90

Source: March Supplement CPS 2012

Table 1 reports descriptive statistics for the variables used in the analysis. Working
women are more highly educated than working men, but have less experience. The uncon-
ditional average gender wage gap is 25%. Figure 3 shows that the log hourly wage variable
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Y has multiple mass points due to rounding in the reporting of the earnings and labor sup-
ply variables. In particular, we observe 2, 633 different values in the 16, 690 observations
for men and 2, 091 different values in the 12, 527 observations for women. We note here
that the inference methods of Section 3 are fully robust to the process that generates mass
points in the variable Y .

Women log hourly wages

 
Log of hourly wage
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−6 −2 2 4 6

0
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Men log hourly wages

 
Log of hourly wage
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500
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Figure 3. Histograms of log hourly wages for women and men.

Figures 4 and 5 show point estimates and 90% joint confidence bands for the observed
and counterfactual distribution and quantile functions of wages. We construct the confi-
dence bands for the distributions using Algorithm 2 by empirical bootstrap with 200 rep-
etitions. Following Theorem 1, we apply left-inverse to these bands to obtain the confi-
dence bands for the quantile functions. We do not report bands that impose the support
constrains because the variable Y takes on many values. Here we find that the wage dis-
tribution for men first order stochastically dominates the wage distribution for women.
The counterfactual quantile function F←〈m w is very similar to the observed quantile func-| 〉
tion for men, suggesting that most of the wage gap is due to gender discrimination. This
observation is confirmed in Figure 6, which plots point estimates and 90% simultaneous
confidence bands for the decomposition of the quantile gender wage gap into composi-
tion and discrimination effects of (2.1). We follow Theorem 2 to construct the bands by the
Minkowski difference of the bands for the quantiles, as described in Algorithm 2. The gen-
der wage gap ranges from 20% to 30% and is increasing with the quantile index. Most of
the gap is explained by gender wage discrimination with the composition having a small
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negative effect non statistically significant for most quantiles. This low contribution of the
composition effect is explained by the similarity in the observable characteristics of man
and women in Table 1.

6. Racial differences in mental ability of young children

As a second empirical application, we analyze the racial IQ test score gap. We use data
from the US Collaborative Perinatal Project (CPP) obtained from [7]. These data contain
information on children from 30,002 women who gave birth in 12 medical centers between
1959 and 1965. Our main outcome of interest, Y , is the standardized test scores at the age
of seven years (both Stanford-Binet and Wechsler Intelligence Test). In addition to the test
score measure, the dataset contains a rich set of background characteristics for the chil-
dren, X , including information on age, gender, region, socioeconomic status, home envi-
ronment, prenatal conditions, and interviewer fixed effects. [7] provide a comprehensive
description of the dataset and extensive descriptive statistics.

A key feature of the test score variable is the discrete nature of its distribution. We
observe only 128 different values for the standardized test score. Figure 7 presents the cor-
responding histogram. Note that each bar corresponds to exactly one value. For instance,
more than 4% of the observations have exactly the same score. This is a common feature
of test scores, which are necessarily discrete because they are based on a finite number of
questions.

In this applicationF0 andF1 correspond to observed and counterfactual distributions of
test scores for black and white children. Following Section 2, we denote these distributions
by F , where〈j|k〉

F j k (y) =

∫
FYj Xj

(y|x)dFXk
(x), y〈 | 〉 | ∈ T, (6.1)

for j, k ∈ {w, b}, where w and b refer to white and black, FYj Xj
is the conditional distribu-|

tion of test scores in group j, and FXk
is the distribution of background characteristics in

group k. With these counterfactual test score distributions it is possible to decompose the
observed black-white test score gap into

F←〈w|w F〉 −
←
〈b|b = [F←〉 〈w|w〉 − F

←
〈w|b ] + [F← F〉 〈w|b〉 −

←
〈b|b ],〉

where the first term in brackets corresponds is the composition effect due to differences in
observable background characteristics and the second term is the unexplained difference.

We estimateF w w andF〈 | 〉 〈b|b by the empirical test score distributions for white and black〉
children, respectively. We estimate the counterfactual distribution F〈w|b by the sample〉
analog of (6.1) replacing FY

em
w|X by the DR estimator for white children, and FX by the

pirical distribution ofX for black
w

children. We use the logistic link function for
b

the DR,
but the results using the linear link function or the normal link function are similar.
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Figure 4. The distribution functions of observed wages for women and
men, and the distribution function of counterfactual wages for women un-
der men’s wage structure, with 90% joint confidence bands. Confidence
bands obtained by empirical bootstrap with 200 repetitions.
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Figure 5. The quantile functions of observed wages for women and men,
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wage structure, with 90% joint confidence bands.
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Figure 6. Decomposition of observed gender wage gap into composition
and discrimination effects, with 90% confidence bands. The composition
effect is the difference between the quantile functions of observed wages for
men and counterfactual wages for women under the men’s wage structure.
The discrimination effect is the difference between the quantile functions
of counterfactual wages for women under the men’s wage structure and
observed wages for women.
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Figure 7. Histogram of test scores of seven year old children. Each bind
corresponds to a unique value of the test score.

Figure 8 reports the results of the decomposition. The first panel shows the observed
and counterfactual quantile functions, F←〈w|w , F← F〉 〈b

←
|b and〉 〈w|b . The second panel shows the〉

difference between the observed quantile functions, F←〈w|w − F
← hir〉 〈b . The t d and fourth|b〉

panels decompose these observed differences into the composition effect (F← ←
〈 − Fw|w〉 〈w|b )〉

and the unexplained component (F← F〈w
←

|b〉 − 〈b|b ). The point estimates are shown with〉
their respective 95% simultaneous confidence bands constructed by Algorithm 2 using
weighted bootstrap with standard exponential weights and B = 1, 000 replications. The
bands impose the restrictions that the supports of the test scores correspond to the ob-
served values in the sample.

We find a large and statistically significant positive raw black-white gap. A formal test
based on the uniform bands rejects the null hypothesis of a zero or a negative racial test
score gap at all quantiles. The estimated QE function is increasing in the quantile index
ranging from below 0.6 standard deviation units at the lower tail up to over one standard
deviation unit at the upper tail of the distribution. The quantile differences at the tails
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Figure 8. Decomposition of observed racial differences in mental ability of
seven year old children. Quantile functions, raw difference, composition
effect, and unexplained difference including support restricted 95% confi-
dence bands.

substantially differ from the mean difference of 0.85 standard deviation units reported in
[7]. In fact, we can formally reject the null hypothesis of a constant raw test score gap across
the distribution because we can not draw a horizontal line at any value of the difference
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of test scores, which is covered by the confidence band of the QE function at all quantile
indexes.

Our decomposition analysis shows that about two third of this gap can be explained by
differences in the distribution of observable characteristics. Nevertheless, the remaining
unexplained difference is significant, both in economic and in statistical terms. Looking
at the quantile effect function, we can see that there is substantial effect heterogeneneity
along the distribution. Interestingly, the increase in the test score gap at the upper quan-
tiles can be fully explained by differences in background characteristics between black and
white children. The resulting unexplained difference is maximized in the center of the dis-
tribution. Finally, our simultaneous confidence bands allow for testing several interesting
hypothesis’ about the whole quantile effect function. For instance, we can reject the null
hypothesis that the composition effect and the unexplained difference are zero, negative,
or constant at all quantiles but we cannot reject that they are positive everywhere.

Notes

The distribution regression model was developed in [11], [5], and [3]. Ronald Oaxaca
[10] and Alan Blinder [1] pioneered the use of least squares methods to carry out decom-
positions of mean wages. The decomposition was extended to distributions in [4], [8], [6],
and [3], among others. The generic inference method of Section 3 was developed in [2].

Appendix A. Problems

(1) Demonstrate that estimation of the counterfactual distribution can be formulated
as a GMM framework.

(2) Replicate the results of the empirical section. Provide a brief explanation for what
you are doing. You can use the R code provided, but you need to write comments
in the code explaining what each block of the code is doing.
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