14.382 FINAL

1. 20 MIN

Explain the idea of partialing out for the linear IV model

$$Y = D\alpha + W'\beta + u,$$

$$D = Z'\delta + W'\gamma + v,$$

and how it can be used to simplify analysis.

2.20 min

Explain why bootstrapping the sample average works.

$3. \ 20 \ \text{min}$

Explain what logistic regression is and how it fits in the GMM framework. What are the large sample properties of the logistic regression estimator?

$4. \ 30 \ \text{min}$

Explain how "FD" and "FE" columns were obtained in the table below and what each entry in these columns are. Explain what clustering in Note 2 refers to.

1

14.382 FINAL

	Pooled	FD	GMM-FD1	GMM-FD2	FE	GMM-FE1	GMM-FE2
$\log(\text{rexpp})$	0.53	-1.41	-1.73	0.65	-0.41	-0.28	1.07
- 、 ,	(2.51)	(4.93)	(2.99)	(1.30)	(2.79)	(2.09)	(1.31)
	[2.49]	[4.65]	[3.43]	[3.39]	[2.74]	[2.51]	[2.61]
$L1.\log(rexpp)$	9.05	11.04	7.94	9.87	7.00	9.44	7.63
- 、 ,	(2.79)	(5.12)	(2.77)	(1.12)	(4.24)	(2.47)	(1.03)
	[2.81]	[5.10]	[3.69]	[4.26]	[4.20]	[3.42]	[3.87]
$\log(\text{enrol})$	0.59	2.14	1.84	1.42	0.25	0.31	0.05
	(0.41)	(1.64)	(1.02)	(0.42)	(0.95)	(0.75)	(0.41)
	[0.40]	[1.59]	[1.34]	[1.32]	[0.95]	[0.96]	[0.93]
lunch	-0.41	0.07	0.02	0.02	0.06	0.01	0.01
	(0.03)	(0.17)	(0.12)	(0.04)	(0.13)	(0.10)	(0.04)
	[0.03]	[0.15]	[0.16]	[0.12]	[0.12]	[0.11]	[0.11]
J-test			25.37	157.94		19.13	157.43
p-val			0.06	0.00		0.51	0.02
d.o.f.			16	101		24	122

 TABLE 1. Effect of Expenditure per Student on Math Scores

Note 1: All the specifications include time effects.

Note 2: Clustered standard errors at the school level in parentheses.

Note 3: Bootstrap standard errors in brackets based on 500 replication.

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

14.382 Econometrics Spring 2017

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.