
Big Data: Big N

V.C. 14.387 Note

December 2, 2014

1

Examples of Very Big Data

�	 Congressional record text, in 100 GBs

�	 Nielsen’s scanner data, 5TBs

�	 Medicare claims data are in 100 TBs

�	 Facebook 200,000 TBs

�	 See ”Nuts and Bolts of Big Data”, NBER lecture, by
Gentzkow and Shapiro. The non-econometric portion of our
slides draws on theirs.

2

Map Reduce & Hadoop

The basic idea is that you need to divide work among the cluster

of computers since you can’t store and analyze the data on a single

computer.

Simple but powerful algorithm framework. Released by Google

around 2004; Hadoop is an open-source version.

Map-Reduce algorithm has the following steps:

1.	 Map: processes ”chunks” of data to produce ”summaries”

2.	 Reduce: combines ”summaries” from different chunks to

produce a single output file

3

�

�

Examples

Count words in docs i . Map: i → set of (word , count) pairs,
Ci Reduce: Collapse {Ci } by summing over count within
word .

Hospital i . Map: i → records Hi for patients who are 65+.
Reduce: Append elements of {Hi }.

4

I

I

Map-Reduce Functionality

Partitions data across machines

Schedules execution across nodes

Manages communication across machines

Handles errors, machine failure

5

I

I

I

I

I

I

I

I

I

I

I

I

User
Program

Master

(1) fork

worker

(1) fork

worker

(1) fork

(2)
assign
map

(2)
assign
reduce

split 0

split 1

split 2

split 3

split 4

output
file 0

 (6) write

worker
(3) read

worker

(4) local write

Map
phase

Intermediate files
(on local disks)

worker output
file 1

Input
files

(5) remote read

Reduce
phase

Output
files

Figure 1: Execution overview

Inverted Index: The map function parses each docu-
ment, and emits a sequence of hword,document IDi
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
hword, list(document ID)i pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a hkey,recordi pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.
This section describes an implementation targeted

to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1)Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data

To appear in OSDI 2004 3

6

Csiegel
Typewritten Text

Csiegel
Typewritten Text

Csiegel
Typewritten Text

Csiegel
Typewritten Text

Csiegel
Typewritten Text

Csiegel
Typewritten Text
Courtesy of Jeffrey Dean and Sanjay Ghemawat. Used with permission.

Csiegel
Typewritten Text

Csiegel
Typewritten Text

�

�

�

�

�

�

�

�

Amazon Web Services

Data centers owned and run by Amazon. You can rent
”virtual computers” minute-by-minute basis

more than 80% of the cloud computing market

nearly 3,000 employees

cost per machine: 0.01 to 4.00 /hour

Several services in AWS

S3 (Storage)

EC2 (Individual Machines)

Elastic Map Reduce

distribute the data for Hadoop clusters

7

I

II

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Distributed and Recursive Computing of Estimators

We want to compute the least squares estimator

nn
ˆ −1 fβ ∈ arg min n (yi − xi b)

2 .
b

i=1

The sample size n is very large and can’t load the data into a
single machine. What could we do if we have a single machine or
many machines?

Use the classical sufficiency ideas to distribute jobs across
machines, spatially or in time.

8

�

�

�

�

The OLS Example

We know that
β̂ = (X fX)−1(X fY).

Hence we can do everything we want with just:

X fX , X fY , n, S0,

where S0 is a ”small” random sample (Yi , Xi)i∈I0 with sample
size n0, where n0 is large, but small enough that the data can
be loaded in the machine.

We need X fX and X fY to compute the estimators to
compute the estimator.

We need S0 to compute robust standard errors and we need

to know n to scale these standard errors appropriately.

9

I

I

I

I

The OLS Example Continued

The terms like X fX and X fY are sums that can be computed
by distribution of jobs over many machines:

1. Suppose machine j stores sample Sj = (Xi , Yi)i∈Ij of size nj .

2. Then we can map Sj to the sufficient statistics n n
Tj = Xi Xi

f , Xi Yi , nj
i∈Ij i∈Ij

for each j .

3. We then collect (Tj)
M
j=1 and reduce them further to

Mn
T = Tj = (X fX , X fY , n).

j=1

10

I

The LASSO Example

The Lasso estimator minimizes

(Y − X β)f(Y − X β) + λIΨβI1, Ψ = diag(X fX)

or equivalently

Y fY − 2βfX fY + βfX fX β + λIΨβI1.

Hence in order to compute Lasso and estimate noise level to tune
λ we only need to know

Y fX , X fX , n, S0.

Computation of sums could be distributed across machines.

11

The Two Stage Least Squares

The estimator takes the form

(X fPZ X)−1X fPZ Y = (X fZ (Z fZ)−1Z fX)−1X fZ (Z fZ)−1Z fY .

Thus we only need to know

Z fZ , X fZ , Z fY , n, S0.

Computation of sums could be distributed across machines.

12

�

�

�

�

Digression: Ideas of Sufficiency are Extremely Useful in

Other Contexts

Motivated by J. Angrist, Lifetime earnings and the Vietnam
era draft lottery: evidence from social security administrative
records, AER, 1990.

We have a small sample S0 = (Zi , Yi)i∈I0 , where Zi are
instruments (that also include exogenous covariates) and Yi

are earnings. In ML speak, this is called ”labelled data” (they
call Yi labels, how uncool)

We also have huge (n » n0) samples of unlabeled data (no Yi

recorded) from which we can obtain Z fX , X fX , Z fZ via
distributed computing (if needed).

We can compute the final 2SLS-like estimator as

n0nn · (X fZ (Z fZ)−1Z fX)−1X fZ (Z fZ)−1 Zi Yi
n0

i=1

Can compute standard errors using S0.
13

I

I

I

I

Exponential Families and Non-Linear Examples

Consider estimation using MLE based upon exponential families.
Here assume data Wi ∼ fθ, where

fθ(w) = exp(T (w)fθ + ϕ(θ)).

Then the MLE maximizes

n nn n
logfθ(Wi) = T (Wi)

fθ + ϕ(θ) =: T fθ + nϕ(θ).
i=1 i=1

The sufficient statistic T can be obtained via distributed
computing. We also need an S0 to obtain standard errors.
Going beyond such quasi-linear examples could be difficult, but
possible.

14

M- and GMM - Estimation
The ideas could be pushed forward using 1-step or approximate
minimization principles. Here is a very crude form of one possible
approach.
Suppose that θ̂ minimizes

n

m(Wi , θ).
i=1

Then given an initial estimator θ̂0 computed on S0 we could do
Newton iterations to approximate θ̂:

n

 −1
 nn n

θ̂j+1 = θ̂j − Vθ
2 m(Wi , θ̂j) Vθm(Wi , θ̂j).

i=1 i=1

Each iteration involves sufficient statistics

n

nn n

θm(Wi , θj), Vθm(Wi , θj)
i=1 i=1

n
2 ˆ

which can obtained via distributed computing.
15

ˆV

�

�

Conclusions

We discussed the large p case, which is difficult. Approximate
sparsity was used as a generalization of the usual parsimonius
approach used in empirical work.

A sea of opportunities for exciting empirical and theoretical
work.

We discussed the large n case, which is less difficult. Here the
key is the distributed computing. Also big n samples often
come in ”unlabeled” form, so you need to be creative in order
to make good use of them.

This is an ocean of opportunities.

16

I

I

I

I

MIT OpenCourseWare
http://ocw.mit.edu

14.387 Applied Econometrics: Mostly Harmless Big Data
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

