14.387 Recitation 3

LATEs, Differences, and Changes

Peter Hull

Fall 2014

Part 1: Some More LATE

Basic LATE Setup

- Potential outcomes/treatment: $Y_i(d,z)$, D_{1i} , D_{0i} , binary Z_i
- Four assumptions
 - 1 Independence: $({Y_i(d,z); \forall d, z}, D_{1i}, D_{0i}) \perp Z_i$
 - 2 Exclusion: $Y_i(1,z) = Y_{1i}$, $Y_i(0,z) = Y_{0i}$, $\forall z$, $\forall i$
 - 3 Monotonicity: $D_{1i} \ge D_{0i}$, $\forall i$
 - First stage: $E[D_{1i} > D_{0i}] \neq 0$
- Assumptions 1-4 in words?
- Linking observed to potentials:

$$D_i = D_{0i} + (D_{1i} - D_{0i})Z_i$$
$$Y_i = Y_{0i} + (Y_{1i} - Y_{0i})D_i$$

The LATE Theorem

Prop: Under Assumptions 1-4,

$$\frac{E[Y_i|Z_i=1] - E[Y_i|Z_i=0]}{E[D_i|Z_i=1] - E[D_i|Z_i=0]} = E[Y_{1i} - Y_{0i}|D_{1i} > D_{0i}]$$

Direct proof:

$$E[D_i|Z_i = 1] - E[D_i|Z_i = 0] = E[D_{1i}|Z_i = 1] - E[D_{0i}|Z_i = 0]$$
$$= E[D_{1i} - D_{0i}]$$
$$= P(D_{1i} > D_{0i})$$

and

$$\begin{split} E[Y_i|Z_i = 1] - E[Y_i|Z_i = 0] = & E[Y_{0i} + (Y_{1i} - Y_{0i})D_{1i}|Z_i = 1] \\ & - E[Y_{0i} + (Y_{1i} - Y_{0i})D_{0i}|Z_i = 0] \\ = & E[(Y_{1i} - Y_{0i})D_{1i} - (Y_{1i} - Y_{0i})D_{0i}] \\ = & E[(Y_{1i} - Y_{0i})(D_{1i} - D_{0i})] \\ = & E[Y_{1i} - Y_{0i}|D_{1i} > D_{0i}]P(D_{1i} > D_{0i}) \end{split}$$

3/20

LATE with Covariates

- In class we saw Abadie's (2003) weighting approach to identifying LATE when Assumptions 1-4 hold conditional on covariates X_i
 - Estimate (perhaps non-parametrically) E[Z_i|X_i] (first step)
 Form kappa:

$$\kappa(D_i, Z_i, X_i) = 1 - \frac{D_i(1 - Z_i)}{1 - E[Z_i|X_i]} - \frac{(1 - D_i)Z_i}{E[Z_i|X_i]}$$

Stimate by WLS

$$(\alpha,\beta) = \arg\min_{a,b} E[\kappa(D_i,Z_i,X_i)(Y_i - a - bD_i)^2]$$

- Requires correcting WLS standard errors for first-step estimation, parametric choice of $E[Z_i|X_i]$; predictions may be outside (0,1)
- Can we handle covariates just with 2SLS?

Conditional LATE with 2SLS: "Saturate and Weight"

- Suppose we can saturate in X_i (e.g. stratified RCT with two-sided compliance)
- At each x in the support can identify

$$\frac{E[Y_i|Z_i = 1, X_i = x] - E[Y_i|Z_i = 0, X_i = x]}{E[D_i|Z_i = 1, X_i = x] - E[D_i|Z_i = 0, X_i = x]} \equiv \beta_{LATE}(x)$$

• MHE advice: "saturate and weight"

$$Y_i = \alpha_X + \beta_{SW} D_i + \varepsilon_i$$
$$D_i = \gamma_X + \pi_X Z_i + v_i$$

i.e. we interact the instrument with every cell of X_i (over-id)

• What does 2SLS of a fully-saturated model identify?

"Saturate and Weight" (cont.)

 \bullet Recall (e.g. PS#1) that β_{SW} is identified by OLS of

$$Y_i = \alpha_X + \beta_{SW} \hat{D}_i + \varepsilon_i$$

where \hat{D}_i is the first-stage predicted value of D_i .

• Recall (also PS#1) that, since this is OLS saturated in X_i ,

$$\beta_{SW} = \frac{E[\beta_{SW}(X_i)\sigma_{\hat{D}}^2(X_i)]}{E[\sigma_{\hat{D}}^2(X_i)]}$$

• Since the first stage is also saturated,

$$\begin{split} \beta_{SW}(x) &= \beta_{LATE}(x) \\ \sigma_{\hat{D}}^2(x) &= Var(\hat{D}_i | X_i = x) \\ &= \pi_x^2 Var(Z_i | X_i = x) \\ &= P(D_{1i} > D_{0i} | X_i = x)^2 \sigma_Z^2(x) \end{split}$$

Pros and Cons of "Saturate and Weight"

$$\beta_{SW} = \frac{E[\beta_{LATE}(X_i)P(D_{1i} > D_{0i}|X_i)^2\sigma_Z^2(X_i)]}{E[P(D_{1i} > D_{0i}|X_i)^2\sigma_Z^2(X_i)]}$$

- Identify a convex combination of covariate-specific LATEs
- Get correct (2SLS) standard errors for free, but
 - Why these weights? (*square* of complier share?)
 - Weighting over full histogram of X_i (not complier histogram)
 - Specification could be heavily over-id'd; might lead to bias
- Is there a better way?

Partially-Linear IV (New!)

• Suppose we instead run the just-identified IV model

$$Y_i = \theta_X + \beta_{PL} D_i + \varepsilon_i$$
$$D_i = \delta_X + \pi Z_i + v_i$$

First/second stage saturated in X_i but linear in Z_i/D_i

• From Abadie (2003) we know

$$\begin{aligned} (\theta_X, \beta_{PL}) &= \arg\min_{b, t_X} E[\kappa(D_i, Z_i, X_i)(Y_i - t_X - bD_i)^2] \\ &= \arg\min_{b, t_X} E[(Y_i - t_X - bD_i)^2 | D_{1i} > D_{0i}] \end{aligned}$$

since $E[Z_i|X_i]$ is fit perfectly when X_i saturates (Prop. 5.1 in paper)

Partially-Linear IV (cont.)

$$(\theta_X, \beta_{PL}) = \arg\min_{b, t_X} E[(Y_i - t_X - bD_i)^2 | D_{1i} > D_{0i}]$$

Again by PS#1/Angrist '98 logic

$$\beta_{PL} = \frac{E[\beta_{PL}(X_i)\sigma_{D_i,C}^2(X_i)|D_{1i} > D_{0i}]}{E[\sigma_{D_i,C}^2(X_i)|D_{1i} > D_{0i}]}$$

Now:

$$egin{aligned} η_{PL}(x) = eta_{LATE}(x) \ &\sigma^2_{D,C}(x) = Var(D_i | X_i = x, D_{1i} > D_{0i}) \ &= Var(Z_i | X_i = x, D_{1i} > D_{0i}) \ &= \sigma^2_Z(x) \end{aligned}$$

Pros of Partially-Linear IV

$$\beta_{PL} = \frac{E[\beta_{LATE}(X_i)\sigma_Z^2(X_i)|D_{1i} > D_{0i}]}{E[\sigma_Z^2(X_i)|D_{1i} > D_{0i}]}$$

- Also identify a convex comb. of $\beta_{LATE}(X_i)$ with a partially-linear first stage
- Get correct standard errors for free
- Weights more intuitive (like usual FE weights)
- Weighting by *complier* histogram of X_i
- Potential efficiency argument (not yet worked out)
- Bottom line: can easily handle saturating covs with IV
- When you can't saturate, do kappa

Part 2: Differences and Changes

Diff-in-diffs and Fixed Effects Regression

• Model:

$$Y_{it} = \alpha_i + \gamma_t + \rho D_{it} + X'_{it}\beta + \varepsilon_{it}$$

where i = 1, ..., N are potentially treated states, t = 1, ..., T is time, d_{it} is an indicator for treatment in state *i* at time *t*, and x_{it} are controls

• Can get rid of state effects by first-differencing the data

$$\Delta Y_{it} = \Delta \gamma_t + \rho \Delta D_{it} + \Delta X'_{it} \beta + \Delta \varepsilon_{it}$$

This is how Card (1992) does Diff-in-Diffs

• Alternatively can demean the data within states

$$\tilde{Y}_{it} = \tilde{\gamma}_t + \rho \, \tilde{D}_{it} + \tilde{X}'_{it} \beta + \tilde{\varepsilon}_{it}$$

This is what a fixed-effects regression does

Diff-in-diffs and FEs (cont.)

- $\bullet\,$ If the model is correct and all variables are measured properly, both methods are consistent for $\rho\,$
 - Motivates measurement error tests (Griliches and Hausman, 1986)
- With only two periods, the methods are numerically equivalent
- Proof of this: write

$$Y_{it} = \alpha_i + W'_{it}\mu + \varepsilon_{it}$$
$$\tilde{Y}_{it} \equiv Y_{it} - \frac{Y_{i1} + Y_{i2}}{2}$$
$$\Delta Y_i \equiv Y_{i2} - Y_{i1}$$

Diffs=FEs when T=2

Note that

$$egin{aligned} & ilde{Y}_{i1} = Y_{i1} - rac{Y_{i1} + Y_{i2}}{2} \ &= rac{1}{2}(Y_{i1} - Y_{i2}) \ &= -rac{1}{2}\Delta Y_i \end{aligned}$$

Similarly

$$\tilde{Y}_{i2} = Y_{i2} - \frac{Y_{1i} + Y_{i2}}{2}$$
$$= \frac{1}{2} \Delta Y_i$$

Diffs=FEs when T=2 (cont.)

Thus

$$\begin{split} \hat{\mu}_{FE} &= \left[\sum_{i=1}^{N} \tilde{W}_{i1} \tilde{W}_{i1}' + \tilde{W}_{i2} \tilde{W}_{i2}'\right]^{-1} \left[\sum_{i=1}^{N} \tilde{W}_{i1} \tilde{Y}_{i1} + \tilde{W}_{i2} \tilde{Y}_{i2}\right] \\ &= \left[\sum_{i=1}^{N} \frac{1}{4} \Delta W_i \Delta W_i' + \frac{1}{4} \Delta W_i \Delta W_i'\right]^{-1} \left[\sum_{i=1}^{N} \frac{1}{4} \Delta W_i \Delta Y_i + \frac{1}{4} \Delta W_i \Delta Y_i\right] \\ &= \left[\sum_{i=1}^{N} \Delta W_i \Delta W_i'\right]^{-1} \left[\sum_{i=1}^{N} \Delta W_i \Delta Y_i\right] \\ &= \hat{\mu}_{FD} \end{split}$$

 \square

Change-in-Changes

- Recall an inherent drawback of difference-in-differences: <u>taking</u> functional form seriously
 - Can't (typically) have parallel trends in both levels and logs
- Athey and Imbens (2006) consider a semiparametric framework to overcome this using estimated distributions of potential outcomes
 - Al'09 assumptions are strong (unlike Al'94): no D-in-D free lunch!
- Basic idea: treatment preserves rank in the outcome distribution; impute the counterfactual change in outcomes for treated using the change in control distribution

C-in-C Setup

• Start with a weak assumption: untreated outcomes satisfy

$$Y_i^0 = h(U_i, T_i)$$

where $T_i \in \{0,1\}$ denotes time and U_i is unobserved heterogeneity

• Nests canonical D-in-D setup:

$$egin{aligned} U_i &= lpha + \gamma G_i + arepsilon_i \ h(u,t) &= u + \delta \cdot t \ arepsilon_i \ oldsymbol{\mathbb{L}} \left(G_i, T_i
ight) \end{aligned}$$

where $G_i \in \{0,1\}$ denotes groups. With treatment $I_i \equiv G_i \cdot T_i$ and constant effects,

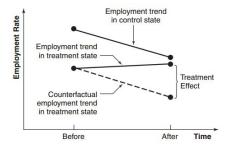
$$Y_{i} = Y_{i}^{0} + \rho I_{i}$$

= $\alpha + \gamma G_{i} + \delta T_{i} + \rho G_{i} \cdot T_{i} + \varepsilon_{i}$

C-in-C Assumptions

Assumption 1 (Strict monotonicity): h(u,t) is strictly increasing in uAssumption 2 (Time invariance): $U_i \perp T_i | G_i$

- Imply rank-preservation: if my U_i puts me at the q-th quantile of the distribution of Y_i⁰ at T_i = 0, it also puts me there at T_i = 1
 - Very strong: like Chernozhukov and Hansen (2005) for quantile IV
- Allow us to impute the change in non-treated outcomes for treated in T_i = 1; conceptually very similar to D-in-D:



@ Princeton University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

C-in-C Identification

Proposition: Under A1 & A2 (and a few other technical conditions)

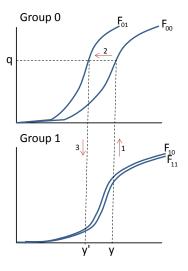
$$E[Y_{11}^{1} - Y_{00}^{0}] = \underbrace{E[Y_{11}^{1}]}_{\text{Observed}} - \underbrace{E[F_{Y,01}^{-1}(F_{Y,00}(Y_{10}))]}_{\text{Counterfactual}}$$

For every value y in the pre-treatment distribution of the treated (F_{10}) :

• Find quantile $q = F_{Y,00}(y)$

• Observe among controls that quantile q changed to $y' = F_{Y,01}^{-1}(q)$ Average these new y' according to the distribution of y

C-in-C Mechanics



• Inference on C-in-C estimator: not a walk in the park (see paper)

14.387 Applied Econometrics: Mostly Harmless Big Data Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.