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Part 1 Expectations and their properties 

Part 1: Expectations and their properties 
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Part 1 Expectations and their properties 

One variable 

Scalar random variable x : 

Discrete x : E [x ] ≡ ∑zPr(x = z) 
z 

Continuous x : E [x ] ≡ zfx (z)dz 

Variance: Var(x) ≡ E [(x − E [x ])f ] 

Random or fxed? 
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Part 1 Expectations and their properties 

Two variables 

Scalar random variables x and y : 

Discrete y : E [y |x ] ≡ ∑zPr(y = z |x)
z

Continuous y : E [y |x ] ≡ zfy |x (z)dz 

Covariance: Cov(x ,y) ≡ E [(x − E [x ])(y − E [y ])] 

Random or fxed? 

x and y are uncorrelated when Cov(x ,y) = 0 

y is mean-independent of x when E [y |x ] = E [y ] 

Which is stronger? 
4
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Part 1 Expectations and their properties 

Two useful properties 

Linearity: for fxed a,b,c , and d 

E [a + bx ] = a + bE [x ] 

=⇒ Cov(a + bx ,c + dy) = bdCov(x ,y) 

The Law of Iterated Expectations: 

E [E [y |x ]] = E [y ] 

(Sloppy) proof of LIE in continuous case:   
E [E [y |x ]] ≡ zfy |x (z |w)dz fx (w)dw 

= z fx ,y (w ,z)dwdz 

= zfy (z)dz 

≡ E [y ] 
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Part 1 Expectations and their properties 

Linearity and LlEing 

Mean independence implies uncorrelatedness: 

E [(x − E [x ])(y − E [y ])] = E [E [(x − E [x ])(y − E [y ])|x ]] 
= E [(x − E [x ])(E [y |x ] − E [y ])] 

= E [(x − E [x ]) · 0] 
= 0 

Covariance with mean-zero r.v.s is the expectation of their product: 

E [(x − E [x ])(y − E [y ])] = E [xy − E [x ]y − xE [y ]+ E [x ]E [y ]] 

= E [xy ] − E [x ]E [y ] − E [x ]E [y ]+ E [x ]E [y ] 

= E [xy ] − E [x ]E [y ] 

= E [xy ], if either E [x ] = 0or E [y ] = 0 

6

0 

0 



Part 2 Regressions large and small 

Part 2: Regressions, large and small 
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Part 2 Regressions large and small 

Bivariate regression 

Scalar random variables xi and yi : 

(α,β ) = arg min E [(yi − a − bxi )
f ] 

a,b 

FOC: − 2E [(yi − α − β xi )] = 0 

− 2E [(yi − α − β xi )xi ] = 0 

or 

α = E [yi ] − β E [xi ] 

β E [xi 
f ] = E [yi xi ] − αE [xi ] 

Substituting: 

β E [xi 
f ] = E [yi xi ] − E [yi ]E [xi ]+ β E [xi ]

f 

E [yi xi ] − E [yi ]E [xi ] Cov(yi ,xi )
β = 

f = 
E [x ] − E [xi ]f Var(xi )i 8



Part 2 Regressions large and small 

Multivariate regression 

Scalar random variable yi and k × 1 random vector xi : 

;
β = arg min E [(yi − xi b)

f ] 
b 

;FOC: − 2E [xi (yi − x β )] = 0i 

(A useful matrix-'metrics resource: The Matrix Cookbook) 

;
β = E [xi xi ]

−� E [xi yi ] 

How do we reconcile this with the last slide? (Where did α go? What 
about Cov() and Var()?) 
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Part 2 Regressions large and small 

Partialling out 

Scalar, mean-zero random variables yi , x i , and xfi : 

(β ,γ) = arg min E [(yi − bx i − cxfi )
f ] 

b,c 

FOCγ : − 2E [xfi (yi − bx i − γxfi )] = 0 

E [xfi (yi − bx i )]
IFT :γ(b) = 

E [xf ]
fi 

Plug γ(b) back in (sometimes called "concentrating out" γ): 

E [xfi (yi − bx i )] 
f 

β = arg min E yi − bx i − xfifb E [x
fi ] 

E [xfi yi ] E [xfi x i ] 
f 

= arg min E yi − xfi − b x i − xfi 
b E [xf ] E [xf ]

fi fi 

A bivariate regression! But of what on what? 10
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Part 2 Regressions large and small 

Partialling out (cont.) 

Special case of the Frisch-Waugh (sometimes -Lovell) theorem: If 
; ; ];xi = [x i ,xfi , x̃ i is the residual (vector) from regressing (each 

component of) x i on xfi , and ỹi is the residual from regressing yi on 
xfi , then all three are equivalent: 

1 

2 

e 

The component β1 of β = [β
1

; ,β
i

; ]; from regressing yi on xi
β̃1 from regressing yi on x̃i
¯
β1 from regressing ỹi on x̃i

Partialling out xfi from yi is unnecessary! Why? Back to our example: 

yi = β x i + γxfi + ei
ỹi = β x̃ i + ẽi

yi = β x̃ i + ẽi + yi − ỹi
E [xfi yi ] 

yi = β x̃ i + ẽi + xfi
E [xf ]

fi 

Why must the last line be a regression (and not just an equation)? 11
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Part 2 Regressions large and small 

From population to sample 

Regression is a feature of data: just like expectation, correlation, etc. 

It's a function of population second moments: so easy to estimate! 

;
β̂ = En[xi xi ]

− En[xi yi ] 

A more matrix-y way to write β̂ : 

−
1
 1


∑ 
i 

xi x
;
i ∑
En[xi x

;
i ]
− En[xi yi ] = xi yi

n
 n i 

= (X ;X )− X ;Y 

where ⎤⎡⎤⎡ ;x y 

X
 =
 ⎢⎣

.  .
 .
 
⎥⎦
,Y
 =
 ⎢⎣


.  .
 .
 
⎥⎦

;x ynn 
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Part 2 Regressions large and small 

Regression subtlety 

β is a feature of data. We know what it is and we know that it
 
(probably) exists, given any yi and xi .
 

p
We also how to estimate it; we know that (probably) β̂ → β (why?)−

(where "probably" ≡ "given some innocuous technical conditions")
 

...ok...but then.... what's all the fuss about? 

Some common examples of fuss: "endogeneity," "simultaneity," 
"omitted variable bias," "selection bias," "measurement error," "division 
bias," etc. etc. etc. 

The fuss. 
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Part e Controls good and bad 

Part 3: Controls: good and bad 
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Part e Controls good and bad 

You can't always get what you want 

reg y x is always going to give you a β̂ estimating the β satisfying 
;E [xi (yi − x β )] = 0i 

But what if this isn't what you want? (When might you want it?) 

Ex: suppose we want β from yi = α + β xi + γai + εi , where we know 
E [εi |xi ,ai ] = 0 

We reg y x (maybe throw on a , r). 
What do we get? What does β̂ plim to? Could it be β ? 

Obvious solution: just control for ai . But why stop there? 
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Part e Controls good and bad 

Bad controls 

Goal: add right controls so that the regression β you get is the β you 
want (i.e. approximates the CEF you want)
 

Ex: We randomly assign schooling si ∈ {0,1}. Want the causal efect
 
of schooling on income yi (a causal CEF)
 

Also measure race bi ∈ {0,1} and post-schooling occupation xi ∈ {0,1}. 
What regression should we run? 

Natural choice: β satisfying E [si (yi − α − β si )] = 0 

Another choice: β satisfying E [si (yi − α − β si − γbi )] = 0. Better? 
How about β satisfying E [si (yi − α − β si − δ xi )] = 0? 
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Part e Controls good and bad 

Controlling composition 

Potential outcomes: {yYi ,y i }. Observe yi = yYi +(y i − yYi )si
Bivariate regression: 

E [yi |si = 1] − E [yi |si = 0] 

= E [yYi +(y i − yYi )si |si = 1] − E [yYi +(y i − yYi )si |si = 0] 

= E [yYi +(y i − yYi )|si = 1] − E [yYi |si = 0] 

= E [y i − yYi |si = 1]+ (E [yYi |si = 1] − E [yYi |si = 0]) 

= E [y i − yYi ] (why?)i 
Average treatment efect 

Recover the CEF, and the CEF is causal. 
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Part e Controls good and bad 

Controlling composition (cont.) 

Potential occupations: {xYi ,x i }. Observe xi = xYi +(x i − xYi )si . 

Suppose three types Ti : 

1 

2 

e 

Always-zeros (Ti = AZ ): xoi = 0, x1i = 0
 
Always-ones (Ti = AO): xoi = 1, x1i = 1
 
Switchers (Ti = SW ): xoi = 0 x1i = 1
 

β satisfying E [si (yi − α − β si − δ xi )] = 0 will be a weighted average of 

β1 

2 

o satisfying E [si (yi − αo − βo si )|xi = 0] = 0
 
β1 satisfying E [si (yi − α1 − β1 si )|xi = 1] = 0
 

Why? Think fxed-efects, or work through Frisch-Waugh algebra 
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Part e Controls good and bad 

Controlling composition (cont.) 

β (similar for βY ): 

E [yi |si = 1,xi = 1] − E [yi |si = 0,xi = 1] 

= E [yYi +(y i − yYi )|si = 1,xi = 1] − E [yYi |Ti = AO] 

= E [y i − yYi |Ti = AO ∨ (Ti = SW ∧ si = 1)]i 
Weighted avg. of type-specifc treatment efects 

+ E [yYi |Ti = AO ∨ (Ti = SW ∧ si = 1)] − E [yYi |Ti = AO]i 
Bias (no causal interpretation) 

Recover the CEF (why?), but it's not a CEF we want (not causal) 

When would this CEF be causal? 
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