14.387 Recitation 1
 Expectations, Regressions, and Controls

Peter Hull

Fall 2014

Part 1: Expectations and their properties

One variable

Scalar random variable x :

$$
\begin{aligned}
\text { Discrete x: } & E[x] \equiv \sum_{z} z \operatorname{Pr}(x=z) \\
\text { Continuous } x: & E[x] \equiv \int z f_{x}(z) d z
\end{aligned}
$$

Variance: $\operatorname{Var}(x) \equiv E\left[(x-E[x])^{2}\right]$
Random or fixed?

Two variables

Scalar random variables x and y :

$$
\begin{aligned}
\text { Discrete } y: & E[y \mid x] \equiv \sum_{z} z \operatorname{Pr}(y=z \mid x) \\
\text { Continuous } y: & E[y \mid x] \equiv \int z f_{y \mid x}(z) d z
\end{aligned}
$$

$$
\text { Covariance: } \operatorname{Cov}(x, y) \equiv E[(x-E[x])(y-E[y])]
$$

Random or fixed?

- x and y are uncorrelated when $\operatorname{Cov}(x, y)=0$
- y is mean-independent of x when $E[y \mid x]=E[y]$

Which is stronger?

Two useful properties

- Linearity: for fixed a, b, c, and d

$$
\begin{aligned}
E[a+b x] & =a+b E[x] \\
\Longrightarrow \operatorname{Cov}(a+b x, c+d y) & =b d \operatorname{Cov}(x, y)
\end{aligned}
$$

- The Law of Iterated Expectations:

$$
E[E[y \mid x]]=E[y]
$$

(Sloppy) proof of LIE in continuous case:

$$
\begin{aligned}
E[E[y \mid x]] & \equiv \int\left(\int z f_{y \mid x}(z \mid w) d z\right) f_{x}(w) d w \\
& =\int z \int f_{x, y}(w, z) d w d z \\
& =\int z f_{y}(z) d z \\
& \equiv E[y]
\end{aligned}
$$

Linearity and LIEing

- Mean independence implies uncorrelatedness:

$$
\begin{aligned}
E[(x-E[x])(y-E[y])] & =E[E[(x-E[x])(y-E[y]) \mid x]] \\
& =E[(x-E[x])(E[y \mid x]-E[y])] \\
& =E[(x-E[x]) \cdot 0] \\
& =0
\end{aligned}
$$

- Covariance with mean-zero r.v.s is the expectation of their product:

$$
\begin{aligned}
E[(x-E[x])(y-E[y])] & =E[x y-E[x] y-x E[y]+E[x] E[y]] \\
& =E[x y]-E[x] E[y]-E[x] E[y]+E[x] E[y] \\
& =E[x y]-E[x] E[y] \\
& =E[x y], \text { if either } E[x]=0 \text { or } E[y]=0
\end{aligned}
$$

Part 2: Regressions, large and small

Bivariate regression

Scalar random variables x_{i} and y_{i} :

$$
\begin{aligned}
(\alpha, \beta) & =\arg \min _{a, b} E\left[\left(y_{i}-a-b x_{i}\right)^{2}\right] \\
\text { FOC }: & -2 E\left[\left(y_{i}-\alpha-\beta x_{i}\right)\right]=0 \\
& -2 E\left[\left(y_{i}-\alpha-\beta x_{i}\right) x_{i}\right]=0
\end{aligned}
$$

or

$$
\begin{aligned}
\alpha & =E\left[y_{i}\right]-\beta E\left[x_{i}\right] \\
\beta E\left[x_{i}^{2}\right] & =E\left[y_{i} x_{i}\right]-\alpha E\left[x_{i}\right]
\end{aligned}
$$

Substituting:

$$
\begin{aligned}
\beta E\left[x_{i}^{2}\right] & =E\left[y_{i} x_{i}\right]-E\left[y_{i}\right] E\left[x_{i}\right]+\beta E\left[x_{i}\right]^{2} \\
\beta & =\frac{E\left[y_{i} x_{i}\right]-E\left[y_{i}\right] E\left[x_{i}\right]}{E\left[x_{i}^{2}\right]-E\left[x_{i}\right]^{2}}=\frac{\operatorname{Cov}\left(y_{i}, x_{i}\right)}{\operatorname{Var}\left(x_{i}\right)}
\end{aligned}
$$

Multivariate regression

Scalar random variable y_{i} and $k \times 1$ random vector x_{i} :

$$
\begin{aligned}
\beta & =\arg \min _{b} E\left[\left(y_{i}-x_{i}^{\prime} b\right)^{2}\right] \\
\text { FOC: } & -2 E\left[x_{i}\left(y_{i}-x_{i}^{\prime} \beta\right)\right]=0
\end{aligned}
$$

(A useful matrix-'metrics resource: The Matrix Cookbook)

$$
\beta=E\left[x_{i} x_{i}^{\prime}\right]^{-1} E\left[x_{i} y_{i}\right]
$$

How do we reconcile this with the last slide? (Where did α go? What about $\operatorname{Cov}()$ and $\operatorname{Var}()$?)

Partialling out

Scalar, mean-zero random variables $y_{i}, x_{1 i}$, and $x_{2 i}$:

$$
\begin{aligned}
& (\beta, \gamma)=\arg \min _{b, c} E\left[\left(y_{i}-b x_{1 i}-c x_{2 i}\right)^{2}\right] \\
& \text { FOC }_{\gamma}:-2 E\left[x_{2 i}\left(y_{i}-b x_{1 i}-\gamma x_{2 i}\right)\right]=0 \\
& \text { IFT }: \gamma(b)=\frac{E\left[x_{2 i}\left(y_{i}-b x_{i}\right)\right]}{E\left[x_{2 i}^{2}\right]}
\end{aligned}
$$

Plug $\gamma(b)$ back in (sometimes called "concentrating out" γ):

$$
\begin{aligned}
\beta & =\arg \min _{b} E\left[\left(y_{i}-b x_{1 i}-\frac{E\left[x_{2 i}\left(y_{i}-b x_{1 i}\right)\right]}{E\left[x_{2 i}^{2}\right]} x_{2 i}\right)^{2}\right] \\
& =\arg \min _{b} E\left[\left(\left(y_{i}-\frac{E\left[x_{2 i} y_{i}\right]}{E\left[x_{2 i}^{2}\right]} x_{2 i}\right)-b\left(x_{1 i}-\frac{E\left[x_{2 i} x_{1 i}\right]}{E\left[x_{2 i}^{2}\right]} x_{2 i}\right)\right)^{2}\right]
\end{aligned}
$$

A bivariate regression! But of what on what?

Partialling out (cont.)

- Special case of the Frisch-Waugh (sometimes -Lovell) theorem: If $x_{i}=\left[x_{1 i}^{\prime}, x_{2 i}^{\prime}\right]^{\prime}, \tilde{x}_{1 i}$ is the residual (vector) from regressing (each component of) $x_{1 i}$ on $x_{2 i}$, and \tilde{y}_{i} is the residual from regressing y_{i} on $x_{2 i}$, then all three are equivalent:
(1) The component β_{1} of $\beta=\left[\beta_{1}^{\prime}, \beta_{2}^{\prime}\right]^{\prime}$ from regressing y_{i} on x_{i}
(2) $\tilde{\beta}_{1}$ from regressing y_{i} on \tilde{x}_{i}
(3) $\bar{\beta}_{1}$ from regressing \tilde{y}_{i} on \tilde{x}_{i}
- Partialling out $x_{2 i}$ from y_{i} is unnecessary! Why? Back to our example:

$$
\begin{aligned}
& y_{i}=\beta x_{1 i}+\gamma x_{2 i}+e_{i} \\
& \tilde{y}_{i}=\beta \tilde{x}_{1 i}+\tilde{e}_{i} \\
& y_{i}=\beta \tilde{x}_{1 i}+\tilde{e}_{i}+y_{i}-\tilde{y}_{i} \\
& y_{i}=\beta \tilde{x}_{1 i}+\left(\tilde{e}_{i}+\frac{E\left[x_{2 i} y_{i}\right]}{E\left[x_{2 i}^{2}\right]} x_{2 i}\right)
\end{aligned}
$$

Why must the last line be a regression (and not just an equation)?

From population to sample

- Regression is a feature of data: just like expectation, correlation, etc.
- It's a function of population second moments: so easy to estimate!

$$
\hat{\beta}=E_{n}\left[x_{i} x_{i}^{\prime}\right]^{-1} E_{n}\left[x_{i} y_{i}\right]
$$

- A more matrix-y way to write $\hat{\beta}$:

$$
\begin{aligned}
E_{n}\left[x_{i} x_{i}^{\prime}\right]^{-1} E_{n}\left[x_{i} y_{i}\right] & =\left(\frac{1}{n} \sum_{i} x_{i} x_{i}^{\prime}\right)^{-1}\left(\frac{1}{n} \sum_{i} x_{i} y_{i}\right) \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime} Y
\end{aligned}
$$

where

$$
X=\left[\begin{array}{c}
x_{1}^{\prime} \\
\vdots \\
x_{n}^{\prime}
\end{array}\right], Y=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]
$$

Regression subtlety

- β is a feature of data. We know what it is and we know that it (probably) exists, given any y_{i} and x_{i}.
- We also how to estimate it; we know that (probably) $\hat{\beta} \xrightarrow{p} \beta$ (why?) (where "probably" \equiv "given some innocuous technical conditions")
- ...ok...but then.... what's all the fuss about?
- Some common examples of fuss: "endogeneity," "simultaneity," "omitted variable bias," "selection bias," "measurement error," "division bias," etc. etc. etc.

The fuss.

Part 3: Controls: good and bad

You can't always get what you want

- reg $y x$ is always going to give you a $\hat{\beta}$ estimating the β satisfying $E\left[x_{i}\left(y_{i}-x_{i}^{\prime} \beta\right)\right]=0$
- But what if this isn't what you want? (When might you want it?)
- Ex: suppose we want β from $y_{i}=\alpha+\beta x_{i}+\gamma a_{i}+\varepsilon_{i}$, where we know $E\left[\varepsilon_{i} \mid x_{i}, a_{i}\right]=0$
- We reg yx (maybe throw on a ,r).
- What do we get? What does $\hat{\beta}$ plim to? Could it be β ?
- Obvious solution: just control for a_{i}. But why stop there?

Bad controls

- Goal: add right controls so that the regression β you get is the β you want (i.e. approximates the CEF you want)
- Ex: We randomly assign schooling $s_{i} \in\{0,1\}$. Want the causal effect of schooling on income y_{i} (a causal CEF)
- Also measure race $b_{i} \in\{0,1\}$ and post-schooling occupation $x_{i} \in\{0,1\}$.
- What regression should we run?
- Natural choice: β satisfying $E\left[s_{i}\left(y_{i}-\alpha-\beta s_{i}\right)\right]=0$
- Another choice: β satisfying $E\left[s_{i}\left(y_{i}-\alpha-\beta s_{i}-\gamma b_{i}\right)\right]=0$. Better?
- How about β satisfying $E\left[s_{i}\left(y_{i}-\alpha-\beta s_{i}-\delta x_{i}\right)\right]=0$?

Controlling composition

- Potential outcomes: $\left\{y_{0 i}, y_{i}\right\}$. Observe $y_{i}=y_{0 i}+\left(y_{i}-y_{0 i}\right) s_{i}$
- Bivariate regression:

$$
\begin{aligned}
& E\left[y_{i} \mid s_{i}=1\right]-E\left[y_{i} \mid s_{i}=0\right] \\
& =E\left[y_{0 i}+\left(y_{i}-y_{0 i}\right) s_{i} \mid s_{i}=1\right]-E\left[y_{0 i}+\left(y_{i}-y_{0 i}\right) s_{i} \mid s_{i}=0\right] \\
& =E\left[y_{0 i}+\left(y_{i}-y_{0 i}\right) \mid s_{i}=1\right]-E\left[y_{0 i} \mid s_{i}=0\right] \\
& =E\left[y_{1 i}-y_{0 i} \mid s_{i}=1\right]+\left(E\left[y_{0 i} \mid s_{i}=1\right]-E\left[y_{0 i} \mid s_{i}=0\right]\right) \\
& =\underbrace{E\left[y_{1 i}-y_{0 i}\right]} \quad(w h y ?)
\end{aligned}
$$

Average treatment effect

- Recover the CEF, and the CEF is causal.

Controlling composition (cont.)

- Potential occupations: $\left\{x_{0 i}, x_{i}\right\}$. Observe $x_{i}=x_{0 i}+\left(x_{i}-x_{0 i}\right) s_{i}$.
- Suppose three types T_{i} :
(1) Always-zeros $\left(T_{i}=A Z\right): x_{0 i}=0, x_{1 i}=0$
(2) Always-ones $\left(T_{i}=A O\right)$: $x_{0 i}=1, x_{1 i}=1$
(3) Switchers $\left(T_{i}=S W\right): x_{0 i}=0, x_{1 i}=1$
- β satisfying $E\left[s_{i}\left(y_{i}-\alpha-\beta s_{i}-\delta x_{i}\right)\right]=0$ will be a weighted average of
(1) β_{0} satisfying $E\left[s_{i}\left(y_{i}-\alpha_{0}-\beta_{0} s_{i}\right) \mid x_{i}=0\right]=0$
(2) β_{1} satisfying $E\left[s_{i}\left(y_{i}-\alpha_{1}-\beta_{1} s_{i}\right) \mid x_{i}=1\right]=0$
- Why? Think fixed-effects, or work through Frisch-Waugh algebra

Controlling composition (cont.)

- β (similar for β_{0}):

$$
\begin{aligned}
& E\left[y_{i} \mid s_{i}=1, x_{i}=1\right]-E\left[y_{i} \mid s_{i}=0, x_{i}=1\right] \\
& =E\left[y_{0 i}+\left(y_{i}-y_{0 i}\right) \mid s_{i}=1, x_{i}=1\right]-E\left[y_{0 i} \mid T_{i}=A O\right] \\
& =\underbrace{E\left[y_{i}-y_{0 i} \mid T_{i}=A O \vee\left(T_{i}=S W \wedge s_{i}=1\right)\right]}
\end{aligned}
$$

Weighted avg. of type-specific treatment effects

$$
+\underbrace{E\left[y_{0 i} \mid T_{i}=A O \vee\left(T_{i}=S W \wedge s_{i}=1\right)\right]-E\left[y_{0 i} \mid T_{i}=A O\right]}_{\text {Bias (no causal interpretation) }}
$$

- Recover the CEF (why?), but it's not a CEF we want (not causal)
- When would this CEF be causal?

MIT OpenCourseWare
http://ocw.mit.edu

14.387 Applied Econometrics: Mostly Harmless Big Data

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

