14.387 Recitation 1 Expectations, Regressions, and Controls

Peter Hull

Fall 2014

Part 1: Expectations and their properties

One variable

Scalar random variable *x*:

Discrete x:
$$E[x] \equiv \sum_{z} zPr(x = z)$$

Continuous x: $E[x] \equiv \int zf_x(z)dz$

Variance:
$$Var(x) \equiv E[(x - E[x])^2]$$

Random or fixed?

Two variables

Scalar random variables x and y:

Discrete y:
$$E[y|x] \equiv \sum_{z} zPr(y=z|x)$$

Continuous y: $E[y|x] \equiv \int zf_{y|x}(z)dz$

Covariance:
$$Cov(x, y) \equiv E[(x - E[x])(y - E[y])]$$

Random or fixed?

• x and y are uncorrelated when Cov(x, y) = 0

• y is mean-independent of x when E[y|x] = E[y]Which is stronger?

Two useful properties

• Linearity: for fixed a, b, c, and d

$$E[a+bx] = a+bE[x]$$

$$\implies Cov(a+bx,c+dy) = bdCov(x,y)$$

• The Law of Iterated Expectations:

E[E[y|x]] = E[y]

(Sloppy) proof of LIE in continuous case:

$$E[E[y|x]] \equiv \int \left(\int zf_{y|x}(z|w)dz \right) f_x(w)dw$$
$$= \int z \int f_{x,y}(w,z)dwdz$$
$$= \int zf_y(z)dz$$
$$\equiv E[y]$$

Linearity and LIEing

• Mean independence implies uncorrelatedness:

$$E[(x - E[x])(y - E[y])] = E[E[(x - E[x])(y - E[y])|x]]$$

= $E[(x - E[x])(E[y|x] - E[y])]$
= $E[(x - E[x]) \cdot 0]$
= 0

• Covariance with mean-zero r.v.s is the expectation of their product:

$$E[(x - E[x])(y - E[y])] = E[xy - E[x]y - xE[y] + E[x]E[y]]$$

= $E[xy] - E[x]E[y] - E[x]E[y] + E[x]E[y]$
= $E[xy] - E[x]E[y]$
= $E[xy]$, if either $E[x] = 0$ or $E[y] = 0$

Part 2: Regressions, large and small

Bivariate regression

Scalar random variables x_i and y_i :

$$(\alpha, \beta) = \arg\min_{a,b} E[(y_i - a - bx_i)^2]$$

FOC: $-2E[(y_i - \alpha - \beta x_i)] = 0$
 $-2E[(y_i - \alpha - \beta x_i)x_i] = 0$

-	۰.	~
	1	•
×		
		-

$$\alpha = E[y_i] - \beta E[x_i]$$
$$\beta E[x_i^2] = E[y_i x_i] - \alpha E[x_i]$$

Substituting:

$$\beta E[x_i^2] = E[y_i x_i] - E[y_i] E[x_i] + \beta E[x_i]^2$$

$$\beta = \frac{E[y_i x_i] - E[y_i] E[x_i]}{E[x_i^2] - E[x_i]^2} = \frac{Cov(y_i, x_i)}{Var(x_i)}$$

Multivariate regression

Scalar random variable y_i and $k \times 1$ random vector x_i :

$$\beta = \arg\min_{b} E[(y_i - x'_i b)^2]$$

FOC: $-2E[x_i(y_i - x'_i \beta)] = 0$

(A useful matrix-'metrics resource: The Matrix Cookbook)

$$\beta = E[x_i x_i']^{-1} E[x_i y_i]$$

How do we reconcile this with the last slide? (Where did α go? What about Cov() and Var()?)

Partialling out

Scalar, mean-zero random variables y_i , x_{1i} , and x_{2i} :

$$(\beta, \gamma) = \arg\min_{b,c} E[(y_i - bx_{1i} - cx_{2i})^2]$$

FOC_{\gamma}: $- 2E[x_{2i}(y_i - bx_{1i} - \gamma x_{2i})] = 0$
IFT : $\gamma(b) = \frac{E[x_{2i}(y_i - bx_{i})]}{E[x_{2i}^2]}$

Plug $\gamma(b)$ back in (sometimes called "concentrating out" γ):

$$\beta = \arg\min_{b} E\left[\left(y_{i} - bx_{1i} - \frac{E[x_{2i}(y_{i} - bx_{1i})]}{E[x_{2i}^{2}]}x_{2i}\right)^{2}\right]$$

=
$$\arg\min_{b} E\left[\left(\left(y_{i} - \frac{E[x_{2i}y_{i}]}{E[x_{2i}^{2}]}x_{2i}\right) - b\left(x_{1i} - \frac{E[x_{2i}x_{1i}]}{E[x_{2i}^{2}]}x_{2i}\right)\right)^{2}\right]$$

A bivariate regression! But of what on what?

Partialling out (cont.)

- Special case of the Frisch-Waugh (sometimes -Lovell) theorem: If $x_i = [x'_{1i}, x'_{2i}]'$, \tilde{x}_{1i} is the residual (vector) from regressing (each component of) x_{1i} on x_{2i} , and \tilde{y}_i is the residual from regressing y_i on x_{2i} , then all three are equivalent:
 - **1** The component β_1 of $\beta = [\beta'_1, \beta'_2]'$ from regressing y_i on x_i
 - 2 $\tilde{\beta}_1$ from regressing y_i on \tilde{x}_i
 - **3** β_1 from regressing \tilde{y}_i on \tilde{x}_i

• Partialling out x_{2i} from y_i is unnecessary! Why? Back to our example:

$$y_{i} = \beta x_{1i} + \gamma x_{2i} + e_{i}$$

$$\tilde{y}_{i} = \beta \tilde{x}_{1i} + \tilde{e}_{i}$$

$$y_{i} = \beta \tilde{x}_{1i} + \tilde{e}_{i} + y_{i} - \tilde{y}_{i}$$

$$y_{i} = \beta \tilde{x}_{1i} + \left(\tilde{e}_{i} + \frac{E[x_{2i}y_{i}]}{E[x_{2i}^{2}]}x_{2i}\right)$$

Why must the last line be a *regression* (and not just an *equation*)? 11

From population to sample

- Regression is a feature of data: just like expectation, correlation, etc.
- It's a function of population second moments: so easy to estimate!

$$\hat{\beta} = E_n[x_i x_i']^{-1} E_n[x_i y_i]$$

• A more matrix-y way to write $\hat{m{eta}}$:

$$E_n[x_i x_i']^{-1} E_n[x_i y_i] = \left(\frac{1}{n} \sum_i x_i x_i'\right)^{-1} \left(\frac{1}{n} \sum_i x_i y_i\right)$$
$$= (X'X)^{-1} X'Y$$

where

$$X = \begin{bmatrix} x_1' \\ \vdots \\ x_n' \end{bmatrix}, Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

Regression subtlety

- β is a feature of data. We know what it is and we know that it (probably) exists, given any y_i and x_i.
- We also how to estimate it; we know that (probably) $\hat{\beta} \xrightarrow{P} \beta$ (why?) (where "probably" \equiv "given some innocuous technical conditions")
- ...ok...but then.... what's all the fuss about?
- Some common examples of fuss: "endogeneity," "simultaneity,"
 "omitted variable bias," "selection bias," "measurement error," "division bias," etc. etc.

The fuss.

Part 3: Controls: good and bad

You can't always get what you want

- reg y x is always going to give you a $\hat{\beta}$ estimating the β satisfying $E[x_i(y_i x'_i\beta)] = 0$
- But what if this isn't what you want? (When might you want it?)
- Ex: suppose we want β from $y_i = \alpha + \beta x_i + \gamma a_i + \varepsilon_i$, where we know $E[\varepsilon_i | x_i, a_i] = 0$
 - We reg y x (maybe throw on a , r).
 - What do we get? What does $\hat{\beta}$ plim to? Could it be β ?
- Obvious solution: just control for a_i. But why stop there?

Bad controls

- Goal: add *right* controls so that the regression β you get is the β you want (i.e. approximates the CEF you want)
- Ex: We randomly assign schooling s_i ∈ {0,1}. Want the causal effect of schooling on income y_i (a causal CEF)
 - Also measure race $b_i \in \{0,1\}$ and post-schooling occupation $x_i \in \{0,1\}$.
 - What regression should we run?
- Natural choice: β satisfying $E[s_i(y_i \alpha \beta s_i)] = 0$
 - Another choice: β satisfying $E[s_i(y_i \alpha \beta s_i \gamma b_i)] = 0$. Better?
 - How about β satisfying $E[s_i(y_i \alpha \beta s_i \delta x_i)] = 0$?

Controlling composition

- Potential outcomes: $\{y_{0i}, y_i\}$. Observe $y_i = y_{0i} + (y_i y_{0i})s_i$
- Bivariate regression:

$$E[y_i|s_i = 1] - E[y_i|s_i = 0]$$

= $E[y_{0i} + (y_i - y_{0i})s_i|s_i = 1] - E[y_{0i} + (y_i - y_{0i})s_i|s_i = 0]$
= $E[y_{0i} + (y_i - y_{0i})|s_i = 1] - E[y_{0i}|s_i = 0]$
= $E[y_{1i} - y_{0i}|s_i = 1] + (E[y_{0i}|s_i = 1] - E[y_{0i}|s_i = 0])$
= $\underbrace{E[y_{1i} - y_{0i}]}_{\text{Average treatment effect}}$ (why?)

• Recover the CEF, and the CEF is *causal*.

Controlling composition (cont.)

- Potential occupations: $\{x_{0i}, x_i\}$. Observe $x_i = x_{0i} + (x_i x_{0i})s_i$.
- Suppose three types T_i:
 - Always-zeros $(T_i = AZ)$: $x_{0i} = 0, x_{1i} = 0$
 - **2** Always-ones $(T_i = AO)$: $x_{0i} = 1, x_{1i} = 1$
 - 3 Switchers $(T_i = SW)$: $x_{0i} = 0$, $x_{1i} = 1$

• β satisfying $E[s_i(y_i - \alpha - \beta s_i - \delta x_i)] = 0$ will be a weighted average of

- β_0 satisfying $E[s_i(y_i \alpha_0 \beta_0 s_i)|x_i = 0] = 0$
- 2 β_1 satisfying $E[s_i(y_i \alpha_1 \beta_1 s_i)|x_i = 1] = 0$

• Why? Think fixed-effects, or work through Frisch-Waugh algebra

Controlling composition (cont.)

• β (similar for β_0):

$$E[y_i|s_i = 1, x_i = 1] - E[y_i|s_i = 0, x_i = 1]$$

$$= E[y_{0i} + (y_i - y_{0i})|s_i = 1, x_i = 1] - E[y_{0i}|T_i = AO]$$

$$= \underbrace{E[y_i - y_{0i}|T_i = AO \lor (T_i = SW \land s_i = 1)]}_{\text{Weighted avg. of type-specific treatment effects}}$$

$$+ \underbrace{E[y_{0i}|T_i = AO \lor (T_i = SW \land s_i = 1)] - E[y_{0i}|T_i = AO]}_{\text{Bias (no causal interpretation)}}$$

Recover the CEF (why?), but it's not a CEF we want (not causal)When would this CEF be causal?

14.387 Applied Econometrics: Mostly Harmless Big Data Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.