
  
 

   
 
    

   
 

         
         

 
      
      

  
 

 
     

   
          

 
   

        
 

 
         

 
 

            
 

   
 

  
     

     
       
           

   
            

        
       

    
 

       
 

         
  

        
        

   
 

 

Topics in Applied Econometrics
	
MIT 14.387 
Fall 2014 

PROBLEM SET I 
1. Regression basics 

You’re interested in the regression of log wages, Yi, on years of schooling, Si, controlling for another 
variable related to schooling and earnings that we’ll call Ai for “ability”.  Write this regression as: 

Yi = α + ρSi + Aiγ + εi		 (1) 

As always, the population regression coefficients α, ρ and γ are defined so that εi is uncorrelated with Si 
and Ai. 

a.  Suppose you run a bivariate regression of Yi on Si instead. Derive the bivariate 
population regression coefficient on Si in terms of the parameters in equation (1).   When 
does the short-regression coefficient equal the long? 

b. Modify (1) to include a vector of maintained controls with coefficient α.  Compare the 
schooling coefficient with and w/o ability in this case. Can the addition of controls change the 
sign of OVB? 

c. Generalize the OVB formula to multivariate Si and Ai. (This is a matrix formula for which I 
give an indulgence). 

d. Why is the long regression more likely to have a causal interpretation? Or is it? 

2. Limited dependent variables 

1.		 Derive the probit and logit likelihood functions and show that maximum likelihood estimation of 
the index coefficients in these models can be interpreted as a weighted nonlinear least squares 
procedure.  Give a GLS interpretation of these MLEs. 

2.		 Derive a simple rule of thumb for logit marginal effects. 
3.		 Consider probit with a single Normally-distributed regressor. Show that OLS estimates the 

average derivative for this model. 
4.		 Derive the Tobit CEF and a simple rule of thumb for Tobit marginal effects.  Use this to show 

that Tobit marginal effects must be smaller in magnitude than the corresponding Tobit 
coefficients. What do Tobit coefficients tell us? 

5.		 Use the data from Angrist-Evans (1998) to produce your own version of MHE Table 3.4.2. 

3. Discuss the relationship between regression and matching, as follows: 

a. Suppose you’re trying to estimate a treatment effect conditional on discrete covariates. 
Prove that if the regression model for covariates is saturated, then the matching and 
regression estimands are the same in either of the following two cases: (i) treatment 
effects are independent of covariates; (ii) treatment assignment is independent of 
covariates. 
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b. Propose a weighted matching estimator that estimates the same thing as regression. 

c. Why might you prefer regression estimates to matching estimates, even if you’re 
primarily interested in the effect of treatment on the treated or the population average 
treatment effect? 

d. (extra credit) Calculate matching and regression estimates in the empirical application 
of your choice. Discuss the difference between the two estimates with the aid of a figure 
like the one used in Angrist (1998) for this purpose. 

4. A stylized version of the Dale and Krueger (2002) regression discussed in class can be written like this 

Yi = α’Xi + ρCi + DUMMY CONTROLS + εi (3) 

where Ci indicates private school attendance. The DUMMY CONTROLS in (3) indicate sets of schools to 
which applicants have applied and been accepted. 

a. Use regression anatomy formulas to show that the DK estimator of private school effects discards 
students in application/admissions groups that consist entirely of private or public schools.  

b. Explain why the result in (a) facilitates interpretation of the DK regression estimates as a 
kind of matching estimator. 

5. IV estimation 

a.		 Construct an extract from the 1980 Census similar to the one used by Angrist and Krueger
	
(1991).  Use this extract to replicate MHE Table 4.6.2.
	

b.		 “Prove” that LIML is approximately unbiased by replicating Figure 4.6.2 in chapter 4 of MHE 
(i.e., do the same Monte Carlo experiment). 

6. Properties of 2SLS
	

Use linear algebra (with a further indulgence granted) to show:
	

a. That 2SLS is an IV estimator. 
b. That 2SLS with one instrument is the same as indirect least squares. 

7. 2SLS and grouping 

a. Define S to be the N×J “summer” matrix such that S’y transforms an N×1 vector y into a J×1 vector of 
sums.  

i. Show that H = S(S’S)-1S’ is an N×N matrix that replaces individual observations with averages. 

ii. Use the notation above to show that GLS on J grouped means is the same as 2SLS. What is the 
instrument matrix in this analogy? What are the fitted values? 

v. Show that GLS for grouped data minimizes a weighted sum of squares and that this “GLS minimand” 
is the same as the chi-square statistic that tests instrument-error orthogonality, where the instruments are 
those in part (iv) 
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