
Many Instruments 4. Estimation & Inference on Treatment Effects in a Partially Linear Model 5. Estimation and Inference on TE in a General Model ConclusionFunctions via Penalization and Selection 3. Estimation and InferencePlan 1. High-Dimensional Sparse Framework 2. Estimation of Regression with 

Econometrics of Big Data: Large p Case 
(p much larger than n) 

Victor Chernozhukov 

MIT, October 2014 

VC Econometrics of Big Data: Large p Case 1



Many Instruments 4. Estimation & Inference on Treatment Effects in a Partially Linear Model 5. Estimation and Inference on TE in a General Model ConclusionFunctions via Penalization and Selection 3. Estimation and InferencePlan 1. High-Dimensional Sparse Framework 2. Estimation of Regression with 

Outline 

Plan 

1. High-Dimensional Sparse Framework 
The Framework 
Two Examples 

2. Estimation of Regression Functions via Penalization and Selection 

3. Estimation and Inference with Many Instruments 

4. Estimation & Inference on Treatment Effects in a Partially Linear 
Model 

5. Estimation and Inference on TE in a General Model 

Conclusion 

VC Econometrics of Big Data: Large p Case 2



Many Instruments 4. Estimation & Inference on Treatment Effects in a Partially Linear Model 5. Estimation and Inference on TE in a General Model ConclusionFunctions via Penalization and Selection 3. Estimation and InferencePlan 1. High-Dimensional Sparse Framework 2. Estimation of Regression with 

Outline for ”Large p” Lectures 

Part I: Prediction Methods 
1.	 High-Dimensional Sparse Models (HDSM) 

•	 Models 
•	 Motivating Examples 

2.	 Estimation of Regression Functions via Penalization and
 
Selection Methods
 

•	 C1-penalization or LASSO methods 
•	 post-selection estimators or Post-Lasso methods 

Part II: Inference Methods 
3.	 Estimation and Inference in IV regression with Many Instruments 
4.	 Estimation and Inference on Treatment Effects with Many
 

Controls in a Partially Linear Model.
 
5.	 Generalizations. 
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Materials 

1. Belloni, Chernozhukov, and Hansen, ”Inference in 
High-Dimensional Sparse Econometric Models”, 2010, Advances in 
Economics and Econometrics, 10th World Congress. 
http://arxiv.org/pdf/1201.0220v1.pdf 
http://arxiv.org/pdf/1201.0220v1.pdf 
2. Research Articles Listed in References. 
3. Stata and or Matlab codes are available for most empirical 
examples via links to be posted at www.mit.edu/˜vchern/. 
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1. High-Dimensional Sparse Econometric Model 
HDSM. A response variable yi obeys 

fyi = xi β0 + Ei , Ei ∼ (0, σ2), i = 1, ..., n 

where xi are p-dimensional; w.l.o.g. we normalize each regressor: 
np 

2xi = (xij , j = 1, ..., p)f, 
1 

xij = 1. 
n 

i=1 

p possibly much larger than n. 
The key assumption is sparsity, the number of relevant regressors is 
much smaller than the sample size: 

pp 
s := 1β010 =  n,1{β0j = 0} « 

j=1 

This generalizes the traditional parametric framework used in 
empirical economics, by allowing the identity 

T = {j ∈ {1, ..., p} : β0j = 0} 

of the relevant s regressors be unknown. 
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Motivation for high p 

�	 transformations of basic regressors zi , 

xi = (P1(zi ), ..., Pp(zi ))
f , 

•	 for example, in wage regressions, Pj s are polynomials or B-splines 
in education and experience. 

�	 and/or simply a very large list of regressors, 
•	 a list of country characteristics in cross-country growth regressions 

(Barro & Lee), 
•	 housing characteristics in hedonic regressions (American Housing 

Survey) 
•	 price and product characteristics at the point of purchase (scanner 

data, TNS). 
•	 judge characteristics in the analysis of economic impacts of the 

eminent domain 
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From Sparsity to Approximate Sparsity 

The key assumption is that the number of non-zero regression 
coefficients is smaller than the sample size: 

p

j=1

p
1{β0j = 0}s := 1β010 « n.= 

The idea is that a low-dimensional (s-dimensional) submodel 
accurately approximates the full p-dimensional model. The 
approximation error is in fact zero. 
The approximately sparse model allows for a non-zero 

' 

approximation error 
f 
i β0 + ri +Ei ,yi = x"

regression function 

that is not bigger than the size of estimation error, namely as 

n

v 
n → ∞      p

i=1 
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Example: 

pp
yi = θj xj + Ei , |θ|(j) < j−a , a > 1/2, 

j=1 

has s = σn1/2a, because we need only s regressors with largest 
coefficients to have 

1 
n 

np
i=1 

r2 
i < σ 

s 
n 
. 

The approximately sparse model generalizes the exact sparse 
model, by letting in approximation error. 
This model also generalizes the traditional series/sieve 
regression model by letting the identity 

T = {j ∈ {1, ..., p} : β0j = 0} 

of the most important s series terms be unknown.
 
All results we present are for the approximately sparse model.
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Example 1: Series Models of Wage Function 

In this example, abstract away from the estimation questions,
 
using population/census data. In order to visualize the idea of
 
the approximate sparsity, consider a contrived example.
 
Consider a series expansion of the conditional expectation
 
E [yi |zi ] of wage yi given education zi .
 
A conventional series approximation to the regression function is,
 
for example,
 

E [yi |zi ] = β1 + β2P1(zi ) + β3P2(zi ) + β4P3(zi ) + ri 

where P1, ..., P3 are low-order polynomials (or other terms). 

VC Econometrics of Big Data: Large p Case 11

I

I

I



Many Instruments 4. Estimation & Inference on Treatment Effects in a Partially Linear Model 5. Estimation and Inference on TE in a General Model ConclusionFunctions via Penalization and Selection 3. Estimation and Inference

�

Plan 1. High-Dimensional Sparse Framework 2. Estimation of Regression withThe Framework Two Examples 

8 10 12 14 16 18 20

6.
0

6.
5

7.
0

education

w
ag

e

Traditional Approximation of Expected Wage Function 

 using Polynomials

In the figure, true regression function E [yi |zi ] computed using 
U.S. Census data, year 2000, prime-age white men. 
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Can we a find a much better series approximation, with the same 
number of parameters?
 
Yes, if we can capture the oscillatory behavior of E [yi |zi ] in some
 
regions.
 
We consider a “very long” expansion 

pp
fE [yi |zi ] = β0jPj (zi ) + ri , 

j=1 

with polynomials and dummy variables, and shop around just for 
a few terms that capture “oscillations”. 
We do this using the LASSO – which finds a parsimonious model 
by minimizing squared errors, while penalizing the size of the 
model through by the sum of absolute values of coefficients. In 
this example we can also find the “right” terms by “eye-balling”. 
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Lasso Approximation of Expected Wage Function 

 using Polynomials and Dummies
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Errors of Traditional and Lasso-Based Sparse Approximations 
RMSE Max Error 

Conventional Series Approximation 0.135 0.290 
Lasso-Based Series Approximation 0.031 0.063 

Notes. 

1.	 Conventional approximation relies on low order polynomial with 4 parameters. 

2.	 Sparse approximation relies on a combination of polynomials and dummy
 
variables and also has 4 parameters.
 

Conclusion. Examples show how the new framework nests and expands the 
traditional parsimonious modelling framework used in empirical economics. 
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2. Estimation of Regression Functions via 
L1-Penalization and Selection 

When p is large, good idea to do selection or penalization to prevent 
overfitting. Ideally, would like to try to minimize a BIC type criterion 
function p p1 n

i 2 
p

[yi − xi β] + λ1β10, 1β10 = 1{β0j = 0}
n 

i=1 j=1 

but this is not computationally feasible – NP hard. 

A solution (Frank and Friedman, 94, Tibshirani, 96) is to replace the C0 

”norm” by a closest convex function – the C1-norm. LASSO estimator β7
then minimizes p p1 n

i 2 
p

[yi − xi β] + λ1β11, 1β11 = |βj |. n 
i=1 j=1 

Globally convex, computable in polynomial time. Kink in the penalty 
induces the solution β̂ to have lots of zeroes, so often used as a model 
selection device. 
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The LASSO 

The rate-optimal choice of penalty level is  
λ =σ · 2 2 log(pn)/n. 

(Bickel, Ritov, Tsybakov, Annals of Statistics, 2009). 

The choice relies on knowing σ, which may be apriori hard to estimate 
when p » n. 

Can estimate σ by iterating from a conservative starting value (standard 
deviation around the sample mean) , see Belloni and Chernozhukov 
(2009, Bernoulli). Very simple. 

Cross-validation is often used as well and performs well in Monte-Carlo, 
but its theoretical validity is an open question in the settings p » n. 
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The 
√ 

LASSO 

√ 
A way around is the LASSO estimator minimizing (Belloni, 
Chernozhukov, Wang, 2010, Biometrika) 

np1 
[yi − xi 

fβ]2 + λ1β11, n 
i=1 

The rate-optimal penalty level is pivotal – independent of σ:  
λ = 2 log(pn)/n. 

Tuning-Free. Globally convex, polynomial time computable via 
conic programming. 
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Heuristics via Convex Geometry 

A simple case: yi = x f β0 +Eii
 "v ' 
=0 

−5 −4 −3 −2 −1 0 1 2 3 4 5

β0 = 0

Q̂(β)

 nQ7 (β) = 1 
i 
iβ]2 for LASSO
 n i=1[yi − x
 

Q7 (β) = 1 
n

 n
i=1[yi − xi 

iβ]2 for 
√ 

LASSO
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Heuristics via Convex Geometry 

A simple case: yi = x f β0 +Eii "v ' 
=0 

−5 −4 −3 −2 −1 0 1 2 3 4 5

β0 = 0

Q̂(β)

Q̂(β0) +∇Q̂(β0)
′β

Q(β) = 1 
n 

√ 

n i 
i=1[yi − xi β]

2 for LASSO7
nQ7 (β) = 1 

n i=1[yi − xi 
iβ]2 for LASSO 
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Heuristics via Convex Geometry 

A simple case: yi = x f β0 +Eii "v ' 
=0 

−5 −4 −3 −2 −1 0 1 2 3 4 5

β0 = 0

Q̂(β)

λ‖β‖1

λ = ‖∇Q̂(β0)‖∞

Q(β) = 1 
n 

√ 

n i 
i=1[yi − xi β]

2 for LASSO7
nQ7 (β) = 1 

n i=1[yi − xi 
iβ]2 for LASSO 
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Heuristics via Convex Geometry 

A simple case: yi = x f β0 +Eii "v ' 
=0 

−5 −4 −3 −2 −1 0 1 2 3 4 5

β0 = 0

Q̂(β)

λ‖β‖1

λ > ‖∇Q̂(β0)‖∞

Q(β) = 1 
n 

√ 

n i 
i=1[yi − xi β]

2 for LASSO7
nQ7 (β) = 1 

n i=1[yi − xi 
iβ]2 for LASSO 
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Heuristics via Convex Geometry 

A simple case: yi = x f β0 +Eii "v ' 
=0 

−5 −4 −3 −2 −1 0 1 2 3 4 5

β0 = 0

Q̂(β)
λ > ‖∇Q̂(β0)‖∞

Q̂(β) + λ‖β‖1

Q(β) = 1 
n 

√ 

n i 
i=1[yi − xi β]

2 for LASSO7
nQ7 (β) = 1 

n i=1[yi − xi 
iβ]2 for LASSO 
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First-order conditions for LASSO 
The 0 must be in the sub-differential of Q̂(β), which implies: 

n

i=1 

n

i=1

p
p1 

n 
f ˆ(yi − xi β)xij = λsign(β̂j ), if β̂j = 0. 

1 
n 

f β̂)xij ≤ λ, if β̂j = 0.−λ ≤ (yi − xi 

These conditions imply: 

n

(yi − x
i=1

p

p
It then makes sense to also choose λ such that with probability 1 − α 

n

(yi − xi β0)xi 1∞ ≤ λ. 
i=1 

1\Q̂(β̂)1∞ = 1 
1 f β̂)xi 1∞ ≤ λ.in 

1\Q̂(β0)1∞ = 1 
1 f 
n 
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Discussion 

LASSO (and variants) will successfully “zero out” lots of irrelevant 
regressors, but it won’t be perfect, (no procedure can distinguish √ 
β0j = C/ n from 0, and so model selection mistakes are bound
 
to happen).
 
λ is chosen to dominate the norm of the subgradient:
 

P(λ > 1\Q� (β0)1∞) → 1, 

and the choices of λ mentioned precisely implement that. √ 
In the case of LASSO, �n 

\Q� (β0) 
��� 
∞ 

| 1 
n 

1≤j≤p 1 

i= max =1 Ei xij |�n 
=1 E

2 
n i i 

does not depend on σ. √ 
Hence for LASSO λ does not depend on σ. 
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Some properties 

Due to kink in the penalty, LASSO (and variants) will successfully
 
“zero out” lots of irrelevant regressors (but don’t expect it to be
 
perfect).
 
Lasso procedures bias/shrink the non-zero coefficient estimates
 
towards zero.
 
The latter property motivates the use of Least squares after
 
Lasso, or Post-Lasso.
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Post-Model Selection Estimator, or Post-LASSO 

Define the post-selection, e.g., post-LASSO estimator as follows: 
√ 

1. In step one, select the model using the LASSO or LASSO. 
2. In step two, apply ordinary LS to the selected model. 

Theory: Belloni and Chernozhukov (ArXiv, 2009, Bernoulli, 2013). 
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Monte Carlo 

In this simulation we used 

s = 6, p = 500, n = 100 

fyi = xi β0 + Ei , Ei ∼ N(0, σ2), 

β0 = (1, 1, 1/2, 1/3, 1/4, 1/5, 0, . . . , 0)f 

xi ∼ N(0, Σ), Σij = (1/2)|i−j|, σ2 = 1 

Ideal benchmark: Oracle estimator which runs OLS of yi on 
xi1, ..., xi6. This estimator is not feasible outside Monte-Carlo. 
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Monte Carlo Results: Prediction Error 

fRMSE: [E [xi (β̂ − β0)]
2]1/2 

n = 100, p = 500 

0
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LASSO Post-LASSO Oracle

Estimation Risk

Lasso is not perfect at model selection, but does find good models, allowing
 
Lasso and Post-Lasso to perform at the near-Oracle level.
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Monte Carlo Results: Bias 

Norm of the Bias E β̂ − β0 

n = 100, p = 500 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

LASSO Post-LASSO

Bias

Post-Lasso often outperforms Lasso due to removal of shrinkage bias. 
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Dealing with Heteroscedasticity∗ 

Heteroscedastic Model: 

yi = xi 
iβ0 + ri + Ei , Ei ∼ (0, σi 

2). 

Heteroscedastic forms of Lasso – Belloni, Chen, Chernozhukov, Hansen 
(Econometrica, 2012). Fully data-driven. 

p1 n
i 2β7 ∈ arg min [yi − xi β] + λ1Ψ7β11, λ = 2 2 log(pn)/n 

β∈Rp n 
i=1 
np

−1 2 2 1/2Ψ = diag[(n [x i ]) + op(1), j = 1, ..., p]7
ij E

i=1 

Penalty loadings Ψ are estimated iteratively: 7 −1 n 2E21. initialize, e.g., Êi = yi − ȳ , Ψ = diag[(n i=1[xij î ])
1/2 , j = 1, ..., p] 

2. obtain β7, update 
i −1 n 2ˆ 7 E2Êi = yi − xi β, Ψ = diag[(n i=1[xij î ])

1/2 , j = 1, ..., p] 
3. iterate on the previous step. √ 

For Heteroscedastic forms of LASSO, see Belloni, Chernozhukov, 
Wang (Annals of Statistics, 2014). 

VC 33Econometrics of Big Data: Large p Case 

IIII

I

I

∑
∑∑

√



Many Instruments 4. Estimation & Inference on Treatment Effects in a Partially Linear Model 5. Estimation and Inference on TE in a General Model ConclusionFunctions via Penalization and Selection 3. Estimation and Inference

   

Plan 1. High-Dimensional Sparse Framework 2. Estimation of Regression with 

Probabilistic intuition for the latter construction ∗ 

Construction makes the ”noise” in Kuhn-Tucker conditions self-normalized,
 
and λ dominates the ”noise”.
 
Union bounds and the moderate deviation theory for self-normalized sums
 
(Jing, Shao, Wang, Ann. Prob., 2005) imply that:
   

n2| 1 
=1[Ei xij ]|P max n i ≤ λ = 1 − O(1/n). 

i x2 
n i=1 E

2 
ij penalty level

1≤j≤p 1 n '    
”max norm of gradient” 

under the condition that 
log p = o(n1/3) 

if for all i ≤ n, j ≤ p 
3 3E[xij Ei ] ≤ K . 
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Regularity Condition on X ∗ 

A simple sufficient condition is as follows.
 
Condition RSE. Take any C > 1. With probability approaching 1, matrix
 

p1 n
iM = xixi , n 

i=1 

obeys 

δiMδ δiMδ
0 < K ≤ min ≤ max ≤ K i < ∞. (1)

lδl0≤sC δiδ lδl0≤sC δiδ 

This holds under i.i.d. sampling if E [xixi 
i] has eigenvalues bounded 

away from zero and above, and: 
– xi has light tails (i.e., log-concave) and s log p = o(n); 
– or bounded regressors maxij |xij | ≤ K and s(log p)5 = o(n). 
Ref. Rudelson and Vershynin (2009). 
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Result 1: Rates for LASSO/ 
√ 

LASSO 

Theorem (Rates) 
Under practical regularity conditions– including errors having 4 + δ bounded 
moments and log p = o(n1/3) – with probability approaching 1, 

n

i=1

p     
1 s log(n ∨ p)1β̂ − β01 < [x iβ̂ − x i 

i i β0]2 < σ
n n 

The rate is close to the “oracle” rate s/n, obtainable when we know 
the “true” model T ; p shows up only through log p. 

References. 
- LASSO — Bickel, Ritov, Tsybakov (Annals of Statistics 2009), Gaussian 

errors. 
- heteroscedastic LASSO – Belloni, Chen, Chernozhukov, Hansen 

(Econometrica 2012), non-Gaussian errors. √ 
- LASSO – Belloni, Chernozhukov and Wang (Biometrika, 2010),
 

non-Gaussian errors.
 √ 
- heteroscedastic LASSO – Belloni, Chernozhukov and Wang (Annals, 

2014), non-Gaussian errors. 
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Result 2: Post-Model Selection Estimator 

In the rest of the talk LASSO means all of its variants, especially their 
heteroscedastic versions. 

Recall that the post-LASSO estimator is defined as follows: 

1. In step one, select the model using the LASSO. 
2. In step two, apply ordinary LS to the selected model. 

Lasso (or any other method) is not perfect at model selection –
 
might include “junk”, exclude some relevant regressors.
 
Analysis of all post-selection methods in this lecture accounts for
 
imperfect model selection .
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Result 2: Post-Selection Estimator 

Theorem (Rate for Post-Selection Estimator) 
Under practical conditions, with probability approaching 1, 

np
1β̂PL − β01 < 

1 
[xi 

fβ̂PL − xi 
fβ0]2 < σ 

s 
log(n ∨ p), 

n n 
i=1 

sUnder some further exceptional cases faster, up to σ . n 

Even though LASSO does not in general perfectly select the 
relevant regressors, Post-LASSO performs at least as well. 
This result was first derived for least squares by 

• Belloni and Chernozhukov (Bernoulli, 2009).
 

Extended to heteroscedastic, non-Gaussian case in
 
• Belloni, Chen, Chernozhukov, Hansen (Econometrica, 2012). 
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Monte Carlo 

In this simulation we used 

s = 6, p = 500, n = 100 

fyi = xi β0 + Ei , Ei ∼ N(0, σ2), 

β0 = (1, 1, 1/2, 1/3, 1/4, 1/5, 0, . . . , 0)f 

xi ∼ N(0, Σ), Σij = (1/2)|i−j|, σ2 = 1 

Ideal benchmark: Oracle estimator which runs OLS of yi on 
xi1, ..., xi6. This estimator is not feasible outside Monte-Carlo. 
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Monte Carlo Results: Prediction Error 

fRMSE: [E [xi (β̂ − β0)]
2]1/2 

n = 100, p = 500 
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0.7

LASSO Post-LASSO Oracle

Estimation Risk

Lasso is not perfect at model selection, but does find good models, allowing
 
Lasso and Post-Lasso to perform at the near-Oracle level.
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Monte Carlo Results: Bias 

Norm of the Bias E β̂ − β0 

n = 100, p = 500 
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Post-Lasso often outperforms Lasso due to removal of shrinkage bias. 
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Part II. 
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3. Estimation and Inference with Many Instruments 
Focus discussion on a simple IV model:       

σ2yi Ei | zi ∼ 0,  σ v = di α + Ei , 
di = g(zi ) + vi , (first stage) vi	 σ v σ2 

v

can have additional low-dimensional controls wi entering both 
equations – assume these have been partialled out; also can 
have multiple endogenous variables; see references for details 
the main target is α, and g is the unspecified regression function 
= “optimal instrument” 
We have either 

•	 Many instruments. xi = zi , or 
•	 Many technical instruments. xi = P(zi ), e.g. polynomials,
 

trigonometric terms.
 

where the number of instruments 

p is large, possibly much larger than n 

. 
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3. Inference in the Instrumental Variable Model 

Assume approximate sparsity: 

fg(zi ) = E[di |zi ] = xi β0 + ri"v ' "v ' 
sparse approximation approx error 

that is, optimal instrument is approximated by s (unknown) 
instruments, such that 

np1 s 
s := 1β010 « n, r2 ≤ σvin n 

i=1 

We shall find these ”effective” instruments amongst xi by Lasso,
 
and estimate the optimal instrument by Post-Lasso,
 
ĝ(zi ) = x f β̂PL.
i 

Estimate α using the estimated optimal instrument via 2SLS. 
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Example 2: Instrument Selection in Angrist-Krueger 
Data 

yi = wage 
di = education (endogenous) 
α = returns to schooling 
zi = quarter of birth and controls (50 state of birth dummies and 7 
year of birth dummies) 
xi = P(zi ), includes zi and all interactions 
a very large list, p = 1530 

Using few instruments (3 quarters of birth) or many instruments 
(1530) gives big standard errors. So it seems a good idea to use 
instrument selection to see if can improve. 
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AK Example 

Estimator Instruments Schooling Coef Rob Std Error 
2SLS (3 IVs) 3 .10 .020 
2SLS (All IVs) 1530 .10 .042 
2SLS (LASSO IVs) 12 .10 .014 

Notes:
 

About 12 constructed instruments contain nearly all information.
 
Fuller’s form of 2SLS is used due to robustness.
 
The Lasso selection of instruments and standard errors are fully
 
justified theoretically below
 

VC 47Econometrics of Big Data: Large p Case 

II

I

I

I

I



Many Instruments 4. Estimation & Inference on Treatment Effects in a Partially Linear Model 5. Estimation and Inference on TE in a General Model ConclusionFunctions via Penalization and Selection 3. Estimation and Inference with

�

� �

� � �

Plan 1. High-Dimensional Sparse Framework 2. Estimation of Regression 

2SLS with Post-LASSO estimated Optimal IV 

2SLS with Post-LASSO estimated Optimal IV 

In step one, estimate optimal instrument g(zi ) = xi 
fβ using 

Post-LASSO estimator. 
In step two, compute the 2SLS using optimal instrument as IV, 

n np p1 
α = [ [dig(zi )

f]]−1 1 
[g(zi )yi ]n n 

i=1 i=1 
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IV Selection: Theoretical Justification 

Theorem (Result 3: 2SLS with LASSO-selected IV) 
Under practical regularity conditions, if the optimal instrument is 
sufficient sparse, namely s2 log2 p = o(n), and is strong, namely 
|E[dig(zi )]| is bounded away from zero, we have that 

√ 
σ−1 n(α − α) →d N(0, 1),n 

where σ2 is the standard White’s robust formula for the variance of n 
2SLS. The estimator is semi-parametrically efficient under 
homoscedasticity. 

Ref: Belloni, Chen, Chernozhukov, and Hansen (Econometrica, 2012)
 
for a general statement.
 

A weak-instrument robust procedure is also available – the sup-score
 
test; see Ref.
 

Key point: “Selection mistakes” are asymptotically negligible due to
 
”low-bias” property of the estimating equations, which we shall discuss
 
later.
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IV Selection: Monte Carlo Justification 

A representative example: Everything Gaussian, with 

100p
jdi = xij · µ + vi , |µ| < 1 

j=1 

This is an approximately sparse model where most of information is 
contained in a few instruments. 
Case 1. p = 100 < n = 250, first stage E [F ] = 40 

Estimator RMSE 5% Rej Prob 
(Fuller’s) 2SLS ( All IVs) 0.13 5.6% 
2SLS (LASSO IVs) 0.08 6% 

Remark. Fuller’s 2SLS is a consistent under many instruments, and is a state of the art 
method. 
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IV Selection: Monte Carlo Justification 

A representative example: Everything Gaussian, with 

100p
jdi = xij · µ + vi , |µ| < 1 

j=1 

This is an approximately sparse model where most of information is 
contained in a few instruments. 
Case 2. p = 100 = n = 100, first stage E [F ] = 40 

Estimator RMSE 5% Rej Prob 
(Fuller’s) 2SLS (Alls IVs) 5.05 8% 
2SLS (LASSO IVs) 0.13 6% 

Conclusion. Performance of the new method is quite reassuring. 
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Example of IV: Eminent Domain 

Estimate economic consequences of government take-over of 
property rights from individuals 

yi = economic outcome in a region i , e.g. housing price index 
di = indicator of a property take-over decided in a court of law, 
by panels of 3 judges 
xi = demographic characteristics of judges, that are randomly 
assigned to panels: education, political affiliations, age, 
experience etc. 
fi = xi + various interactions of components of xi , 
a very large list p = p(fi ) = 344 
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Eminent Domain Example Continued. 

Outcome is log of housing price index; endogenous variable is 
government take-over 
Can use 2 elementary instruments, suggested by real lawyers 
(Chen and Yeh, 2010) 
Can use all 344 instruments and select approximately the right 
set using LASSO. 

Estimator Instruments Price Effect Rob Std Error 
2SLS 2 .07 .032 
2SLS / LASSO IVs 4 .05 .017 
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4. Estimation & Inference on Treatment Effects in a 
Partially Linear Model 

Example 3: (Exogenous) Cross-Country Growth Regression. 

Relation between growth rate and initial per capita GDP, 
conditional on covariates, describing institutions and 
technological factors: 

pp
GrowthRate = β0 + α log(GDP)+ βj xij + Ei" v ' "v ' " v ' 

yi ATE j=1di 

where the model is exogenous, 

E[Ei |di , xi ] = 0. 

Test the convergence hypothesis – α < 0 – poor countries catch
 
up with richer countries, conditional on similar institutions etc.
 
Prediction from the classical Solow growth model.
 
In Barro-Lee data, we have p = 60 covariates, n = 90
 
observations. Need to do selection.
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How to perform selection? 

(Don’t do it!) Naive/Textbook selection 
1.	 Drop all xij 

is that have small coefficients, using model selection 
devices (classical such as t-tests or modern) 

2.	 Run OLS of yi on di and selected regressors. 

Does not work because fails to control omitted variable bias. 
(Leeb and Pötscher, 2009). 

We propose Double Selection approach: 
1.	 Select controls xij ’s that predict yi . 
2.	 Select controls xij ’s that predict di . 
3.	 Run OLS of yi on di and the union of controls selected in steps 1 

and 2. 

The additional selection step controls the omitted variable bias. 
We find that the coefficient on lagged GDP is negative, and the 
confidence intervals exclude zero. 
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Method 
Real GDP per capita (log) 
Effect Std. Err. 

Barro-Lee (Economic Reasoning) 
All Controls (n = 90, p = 60) 
Post-Naive Selection 

−0.02 
−0.02 
−0.01 

0.005 
0.031 
0.004 

Post-Double-Selection −0.03 0.011 

Double-Selection finds 8 controls, including trade-openness and
 
several education variables.
 
Our findings support the conclusions reached in Barro and Lee
 
and Barro and Sala-i-Martin.
 
Using all controls is very imprecise.
 
Using naive selection gives a biased estimate for the speed of
 
convergence.
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TE in a Partially Linear Model 

Partially linear regression model (exogenous) 

yi = di α0 + g(zi ) + ζi , E[ζi | zi , di ] = 0, 

yi is the outcome variable 
di is the policy/treatment variable whose impact is α0 

zi represents confounding factors on which we need to condition 
For us the auxilliary equation will be important: 

di = m(zi ) + vi , E[vi | zi ] = 0, 

m summarizes the counfounding effect and creates omitted 
variable biases. 
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TE in a Partially Linear Model 

Use many control terms xi = P(zi ) ∈ IRp to approximate g and m 

f fyi = di α0 + xi βg0 + rgi +ζi , di = xi βm0 + rmi +vi" v ' " v ' 
g(zi ) m(zi ) 

Many controls. xi = zi . 
Many technical controls. xi = P(zi ), e.g. polynomials, 
trigonometric terms. 

Key assumption: g and m are approximately sparse 
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The Inference Problem and Caveats 

yi = di α0 + xi 
fβg0 + ri + ζi , E[ζi | zi , di ] = 0, 

Naive/Textbook Inference: 
1.	 Select controls terms by running Lasso (or variants) of yi on di 

and xi 

2.	 Estimate α0 by least squares of yi on di and selected controls, 
apply standard inference 

However, this naive approach has caveats: 
Relies on perfect model selection and exact sparsity. Extremely 
unrealistic. 
Easily and badly breaks down both theoretically (Leeb and 
Pötscher, 2009) and practically. 
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Monte Carlo 

In this simulation we used: p = 200, n = 100, α0 = .5 

fyi = di α0 + xi (cy θ0) + ζi , ζi ∼ N(0, 1) 

fdi = xi (cd θ0) + vi , vi ∼ N(0, 1) 

approximately sparse model: 

θ0j = 1/j2 

let cy and cd vary to vary R2 in each equation 
regressors are correlated Gaussians: 

x ∼ N(0, Σ), Σkj = (0.5)|j−k|. 
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Distribution of Naive Post Selection Estimator 

R2 = .5 and R2 = .5d y 

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
0

=⇒ badly biased, misleading confidence intervals; 
predicted by theorems in Leeb and Pötscher (2009) 
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Inference Quality After Model Selection 

Look at the rejection probabilities of a true hypothesis.
 

Ideal Rejection Rate
 

=⇒ R2 
y

fyi = di α0 + xi ( cy θ0) + ζi 

fdi = xi ( cd θ0) + vi"v ' 
=⇒ Rd 
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Inference Quality of Naive Selection 

Look at the rejection probabilities of a true hypothesis.
 

Naive/Textbook Selection Ideal
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actual rejection probability (LEFT) is far off the nominal rejection probability (RIGHT) 
consistent with results of Leeb and Pötscher (2009) 
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Our Proposal: Post Double Selection Method 

To define the method, write the reduced form (substitute out di ) 

f ¯= x ri + ¯yi i β0 + ¯ ζi , 
fdi = xi βm0 + rmi + vi , 

1. (Direct) Let ̂I1 be controls selected by Lasso of yi on xi . 
2. (Indirect) Let ̂I2 be controls selected by Lasso of di on xi . 
3. (Final) Run least squares of yi on di and union of selected controls: 

np
ˆ(α̌, β̌) = argmin { 

1 
[(yi − di α − xi 

fβ)2] : βj = 0, ∀j  ∈ ̂I = I1 ∪ ̂I2}. nα∈R,β∈Rp
i=1 

The post-double-selection estimator.
 

Belloni, Chernozhukov, Hansen (World Congress, 2010).
 
Belloni, Chernozhukov, Hansen (ReStud, 2013)
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Distributions of Post Double Selection Estimator 

R2 = .5 and R2 = .5d y 

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
0

=⇒ low bias, accurate confidence intervals 
Belloni, Chernozhukov, Hansen (2011) 
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Inference Quality After Model Selection 

Double Selection Ideal 
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the left plot is rejection frequency of the t-test based on the post-double-selection
 
estimator
 

Belloni, Chernozhukov, Hansen (2011)
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Intuition 

The double selection method is robust to moderate selection 
mistakes. 
The Indirect Lasso step — the selection among the controls xi 
that predict di – creates this robustness. It finds controls whose 
omission would lead to a ”large” omitted variable bias, and 
includes them in the regression. 
In essence the procedure is a selection version of Frisch-Waugh 
procedure for estimating linear regression. 
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More Intuition 
Think about omitted variables bias in case with one treatment (d) and one 
regressor (x): 

yi = αdi + βxi + ζi ; di = γxi + vi 

If we drop xi , the short regression of yi on di gives 
√ √ 

n(α7 − α) = good term + n (DiD/n)−1(X iX/n)(γβ) . ' 
OMVB 

the good term is asymptotically normal, and we want 
√ 

nγβ → 0. 

naive selection drops xi if β = O( log n/n), but 
√ 

nγ log n/n → ∞ 

double selection drops xi only if both β = O( log n/n) and 
γ = O( log n/n), that is, if 

√ √ 
nγβ = O((log n)/ n) → 0. 
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Main Result 

Theorem (Result 4: Inference on a Coefficient in 
Regression) 
Uniformly within a rich class of models, in which g and m admit a 
sparse approximation with s2 log2(p ∨ n)/n → 0 and other practical 
conditions holding, 

σ−1√ 
n(α̌ − α0) →d N(0, 1),n 

where σ2 is Robinson’s formula for variance of LS in a partially linear n 
model. Under homoscedasticity, semi-parametrically efficient. 

Model selection mistakes are asymptotically negligible due to 
double selection. 
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Application: Effect of Abortion on Murder Rates 

Estimate the consequences of abortion rates on crime, Donohue and 
Levitt (2001) 

fyit = αdit + xit β + ζit 

yit = change in crime-rate in state i between t and t − 1, 
dit = change in the (lagged) abortion rate, 
xit = controls for time-varying confounding state-level factors, 
including initial conditions and interactions of all these variables 
with trend and trend-squared 
p = 251, n = 576 
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Effect of Abortion on Murder, continued 

Double selection: 8 controls selected, including initial conditions 
and trends interacted with initial conditions 

Murder 
Estimator Effect Std. Err. 
DL -0.204 0.068 
Post-Single Selection - 0.202 0.051 
Post-Double-Selection -0.166 0.216 
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Bonus Track: Generalizations.∗ 

The double selection (DS) procedure implicitly identifies α0 implicitly off 
the moment condition: 

E[Mi (α0, g0, m0)] = 0, 

where 
Mi (α, g, m) = (yi − di α − g(zi ))(di − m(zi )) 

where g0 and m0 are (implicitly) estimated by the post-selection 
estimators. 

The DS procedure works because Mi is ”immunized” against 
perturbations in g0 and m0: 

∂ ∂
E[Mi (α0, g, m0)]|g=g0 = 0, E[Mi (α0, g0, m)]|m=m0 = 0. 

∂g ∂m 

Moderate selection errors translate into moderate estimation errors, 
which have asymptotically negligible effects on large sample distribution 
of estimators of α0 based on the sample analogs of equations above. 
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Can this be generalized? Yes. Generally want to create moment 
equations such that target parameter α0 is identified via moment 
condition: 

E[Mi (α0, h0)] = 0, 

where α0 is the main parameter, and h0 is a nuisance function (e.g. 
h0 = (g0, m0)), with Mi ”immunized” against perturbations in h0: 

∂ 
E[Mi (α0, h)]|h=h0 = 0 

∂h 

This property allows for ”non-regular” estimation of h, via 
post-selection or other regularization methods, with rates that are √ 
slower than 1/ n. 
It allows for moderate selection mistakes in estimation. 
In absence of the immunization property, the post-selection 
inference breaks down. 
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Bonus Track: Generalizations.∗ 

Examples in this Framework: 

1. IV model 
Mi (α, g) = (yi − di α)g(zi ) 

has immunization property (since E[(yi − di α0)g̃(zi )] = 0 for any g̃), and this 
=⇒ validity of inference after selection-based estimation of g) 

2. Partially linear model 

Mi (α, g, m) = (yi − di α − g(zi ))(di − m(zi )) 

has immunization property, which =⇒ validity of post-selection inference, 
where we do double selection – controls that explain g and m. 

3. Logistic, Quantile regression, Method-of-Moment Estimators 

Belloni, Chernozhukov, Kato (2013, ArXiv, to appear Biometrika) 

Belloni, Chernozhukov, Ying (2013, ArXiv) 
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4. Likelihood with Finite-Dimensional Nuisance Parameters In likelihood
 
settings, the construction of orthogonal equations was proposed by Neyman.
 
Suppose that (possibly conditional) log-likelihood function associated to
 
observation Wi is C(Wi , α, β), where α ∈ Rd1 and β ∈ Rp.
 
Then consider the moment function:
 

Mi (α, β) = Cα(W , α, β) − Jαβ J−1Cβ (W , α, β),ββ 

where, for γ = (αi, βi) and γ0 = (αi 
0, β0

i ), 

2 2∂ ∂∂2 
∂αα/ E[C(W , γ) ] 

∂αβ/ E[C(W , γ) ] 
J = E[C(W , γ) ]|γ=γ0 = 2 2∂ ∂∂γγi 

∂βα/ E[C(W , γ) ]i 
∂ββ/ E[C(W , γ) ]

       
Jαα Jαβ =: J i . 
αβ Jββ

The function has the orthogonality property: 

∂ 
EMi (α0, β)|β=β0 = 0. 

∂β 

γ=γ0 
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5. GMM Problems with Finite-Dimensional Parameters Suppose 
γ0 = (α0, β0) is identified via the moment equation: 

E[m(W , α0, β0)] = 0 

Consider: 
Mi (α, β) = Am(W , α, β), 

where 
αΩ

−1 
αΩ

−1Gβ (Gβ 
i Ω−1Gβ )

−1Gβ 
i Ω−1

is an “partialling out” operator, where, for γ = (αi, βi) and γ0 = (αi 
0, β0

i ), 

∂ ∂ 

A = (Gi − Gi ), 

Gγ = E[m(W , α, β)]|γ=γ0 = EP[m(W , α, β)]|γ=γ0 =: [Gα, Gβ ]. 
∂γi ∂γi 

and 
Ω = E[m(W , α0, β0)m(W , α0, β0)

i] 

The function has the orthogonality property: 

∂ 
EMi (α0, β)|β=β0 = 0. 

∂β 
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5. Heterogeneous Treatment Effects∗ 

Here di is binary, indicating the receipt of the treatment, 
Drop partially linear structure; instead assume di is fully 
interacted with all other control variables: 

yi = dig(1, zi ) + (1 − di )g(0, zi )+ζi , E[ζi | di , zi ] = 0 " v ' 
g(di ,zi ) 

di = m(zi ) + ui , E[ui |zi ] = 0 (as before) 

Target parameter. Average Treatment Effect: 

α0 = E[g(1, zi ) − g(0, zi )]. 

Example. di = 401(k) eligibility, zi = characteristics of the 
worker/firm, yi = net savings or total wealth, α0 = the average 
impact of 401(k) eligibility on savings. 
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5. Heterogeneous Treatment Effects ∗ 

An appropriate Mi is given by Hahn’s (1998) efficient score   
di (yi − g(1, zi )) (1 − di )(yi − g(0, zi ))Mi (α, g, m) = − + g(1, zi ) − g(0, zi ) − α. 

m(zi ) 1 − m(zi ) 

which is ”immunized” against perturbations in g0 and m0: 

∂ ∂
E[Mi (α0, g, m0)]|g=g0 = 0, E[Mi (α0, g0, m)]|m=m0 = 0. 

∂g ∂m 

Hence the post-double selection estimator for α is given by 
N   

1 � di (yi − gg(1, zi )) (1 − di )(yi − gg(0, zi ))α̌ = − + gg(1, zi ) − gg(0, zi ) ,
N ˆ 1 − gm(zi ) m(zi )i=1

where we estimate g and m via post- selection (Post-Lasso) 
methods. 
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Theorem (Result 5: Inference on ATE) 
Uniformly within a rich class of models, in which g and m admit a 
sparse approximation with s2 log2(p ∨ n)/n → 0 and other practical 
conditions holding, 

σ−1√ 
n(α̌ − α0) →d N(0, 1),n 

where σ2 = E[Mi 
2(α0, g0, m0)].n 

Moreover, α̌ is semi-parametrically efficient for α0. 

Model selection mistakes are asymptotically negligible due to the 
use of ”immunizing” moment equations. 
Ref. Belloni, Chernozhukov, Hansen “Inference on TE after selection amongst 
high-dimensional controls” (Restud, 2013). 
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Conclusion 

Approximately sparse model 
Corresponds to the usual ”parsimonious” approach, but 
specification searches are put on rigorous footing 
Useful for predicting regression functions 
Useful for selection of instruments 
Useful for selection of controls, but avoid naive/textbook 
selection 
Use double selection that protects against omitted variable bias 
Use “immunized” moment equations more generally 
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