14.387 Recitation 2
 Probits, Logits, and 2SLS

Peter Hull

Fall 2014

Part 1: Probits, Logits, Tobits, and other Nonlinear CEFs

Going Latent (in Binary): Probits and Logits

Scalar bernoulli y_{i}, vector x_{i}. Assume

$$
\begin{aligned}
y_{i}^{*} & =x_{i}^{\prime} \beta+v_{i}^{*} \\
y_{i} & =\mathbf{1}\left\{y_{i}^{*} \geq 0\right\}
\end{aligned}
$$

- y_{i}^{*} and v_{i}^{*} : latent (unobserved) random variables
- Whats the CEF $\left(E\left[y_{i} \mid x_{i}\right]\right)$?
- Depends on the (conditional) CDF (of v_{i}^{*}):

$$
\begin{aligned}
E\left[y_{i} \mid x_{i}\right] & =P\left(y_{i}^{*} \geq 0 \mid x_{i}\right) \\
& =P\left(v_{i}^{*} \geq-x_{i}^{\prime} \beta \mid x_{i}\right) \\
& =1-F_{v^{*}}\left(-x_{i}^{\prime} \beta\right) \\
& =F_{v^{*}}\left(x_{i}^{\prime} \beta\right)
\end{aligned}
$$

- Last line follows by CDF symmetry (usually assumed)
- Probit $F_{V^{*}}()=$? Logit $F_{V^{*}}()=$? Must the CEF actually be nonlinear?

Nonlinear Estimation

Two ways (at least) that β is (probably) identified (where "probably" \equiv "given some innocuous technical conditions")
(1) Maximum Likelihood (MLE):

$$
\begin{aligned}
\beta^{M L E} & =\arg \max _{\beta} \prod_{i} f_{y \mid x}\left(y_{i} \mid x_{i}, \beta\right) \\
& =\arg \max _{\beta} \prod_{i} F_{v^{*}}\left(x_{i}^{\prime} \beta\right)^{y_{i}}\left(1-F_{v^{*}}\left(x_{i}^{\prime} \beta\right)\right)^{1-y_{i}}
\end{aligned}
$$

since $P\left(y_{i}=1 \mid x_{i}, \beta\right)=F_{v^{*}}\left(x_{i}^{\prime} \beta\right)$ and $P\left(y_{i}=0 \mid x_{i}, \beta\right)=1-F_{v^{*}}\left(x_{i}^{\prime} \beta\right)$
(1) Nonlinear Least Squares (NLS)

$$
\beta^{N L S}=\arg \min _{\beta} E\left[\left(y_{i}-F_{v^{*}}\left(x_{i}^{\prime} \beta\right)\right)^{2}\right]
$$

since $E\left[y_{i} \mid x_{i}\right]=F_{\nu^{*}}\left(x_{i}^{\prime} \beta\right) \Longrightarrow y_{i}=F_{\nu^{*}}\left(x_{i}^{\prime} \beta\right)+\varepsilon_{i}$ with

$$
E\left[\varepsilon_{i}\right]=E\left[y_{i}-E\left[y_{i} \mid x_{i}\right]\right]=0
$$

As with OLS, minimize expected squared prediction error, $E\left[\varepsilon_{i}^{2}\right]$

Maximum Likelihood

$$
\begin{aligned}
\beta^{M L E} & =\arg \max _{\beta} \prod_{i} F_{V^{*}}\left(x_{i}^{\prime} \beta\right)^{y_{i}}\left(1-F_{V^{*}}\left(x_{i}^{\prime} \beta\right)\right)^{1-y_{i}} \\
& =\arg \max _{\beta} \sum_{i} y_{i} \ln \left(F_{V^{*}}\left(x_{i}^{\prime} \beta\right)\right)+\left(1-y_{i}\right) \ln \left(1-F_{V^{*}}\left(x_{i}^{\prime} \beta\right)\right)
\end{aligned}
$$

F.O.C.:

$$
\begin{aligned}
0 & =\sum_{i} y_{i} \frac{f_{v^{*}}\left(x_{i}^{\prime} \beta^{M L E}\right)}{F_{V^{*}}\left(x_{i}^{\prime} \beta^{M L E}\right)} x_{i}-\left(1-y_{i}\right) \frac{f_{V^{*}}\left(x_{i}^{\prime} \beta^{M L E}\right)}{1-F_{V^{*}}\left(x_{i}^{\prime} \beta^{M L E}\right)} x_{i} \\
& =\sum_{i}\left(\frac{\left(1-y_{i}\right)}{F_{V^{*}}\left(x_{i}^{\prime} \beta^{M L E}\right)}-\frac{\left(1-F_{V^{*}}\left(x_{i}^{\prime} \beta^{M L E}\right)\right.}{1}\right) f_{V^{*}}\left(x_{i}^{\prime} \beta^{M L E}\right) x_{i} \\
& =\sum_{i} \frac{\left(y_{i}-F_{V^{*}}\left(x_{i}^{\prime} \beta^{M L E}\right)\right) f_{V^{*}}\left(x_{i}^{\prime} \beta^{M L E}\right) x_{i}}{F_{V^{*}}\left(x_{i}^{\prime} \beta^{M L E}\right)\left(1-F_{v^{*}}\left(x_{i}^{\prime} \beta^{M L E}\right)\right)}
\end{aligned}
$$

Plug-in estimator $\widehat{\beta^{M L E}}$ solves this in the sample

Nonlinear Least Squares

$$
\beta^{N L S}=\arg \min _{\beta} E\left[\left(y_{i}-F_{v^{*}}\left(x_{i}^{\prime} \beta\right)\right)^{2}\right]
$$

F.O.C. (ignoring -2 factor):

$$
0=E\left[\left(y_{i}-F_{v^{*}}\left(x_{i}^{\prime} \beta^{N L S}\right)\right) f_{v^{*}}\left(x_{i}^{\prime} \beta^{N L S}\right) x_{i}\right]
$$

Plug-in estimator $\widehat{\beta^{N L S}}$ solves this in the sample

$$
0=\frac{1}{N} \sum_{i}\left(y_{i}-F_{\nu^{*}}\left(x_{i}^{\prime} \widehat{\beta^{N L S}}\right)\right) f_{V^{*}}\left(x_{i}^{\prime} \widehat{\beta^{N L S}}\right) x_{i}
$$

Look familiar?

MLE as Weighted Nonlinear Least Squares

Weighted NLS (like weighted least squares):

$$
\beta^{w N L S}=\arg \min _{\beta} E\left[W\left(x_{i}, y_{i}\right)\left(y_{i}-F_{v^{*}}\left(x_{i}^{\prime} \beta\right)\right)^{2}\right]
$$

for some (known) weight function $W\left(x_{i}, y_{i}\right)$. F.O.C.?

$$
0=\sum_{i} W\left(x_{i}, y_{i}\right)\left(y_{i}-F_{v^{*}}\left(x_{i}^{\prime} \widehat{\beta^{w N L S}}\right)\right) f_{v^{*}}\left(x_{i}^{\prime} \widehat{\beta^{w N L S}}\right) x_{i}
$$

Recall

$$
0=\sum_{i} \frac{\left(y_{i}-F_{V^{*}}\left(x_{i}^{\prime} \widehat{\beta^{M L E}}\right)\right) f_{V^{*}}\left(\frac{x_{i}^{\prime}}{\widehat{\beta^{M L E}}}\right) x_{i}}{F_{V^{*}}\left(x_{i}^{\prime} \widehat{\beta^{M L E}}\right)\left(1-F_{v^{*}}\left(x_{i}^{\prime} \widehat{\beta^{M L E}}\right)\right)}
$$

$\widehat{\beta^{M L E}}$ is a weighted NLLS estimator! But with what weights?

MLE as Weighted Nonlinear Least Squares (cont.)

$$
W^{M L E}\left(x_{i}, y_{i}\right)=\left(F_{V^{*}}\left(x_{i}^{\prime} \widehat{\beta^{M L E}}\right)\left(1-F_{v^{*}}\left(x_{i}^{\prime} \widehat{\beta^{M L E}}\right)\right)\right)^{-1}
$$

- MLE infeasible as one-step wNLS estimator ($\widehat{\beta^{M L E}}$ on both right and left of optimization)
- But recall another infeasible estimator

$$
\widehat{\beta G L S}=\arg \min _{\beta} \sum_{i}\left(\frac{y_{i}-x_{i}^{\prime} \beta}{V_{\varepsilon}\left(x_{i}\right)}\right)^{2}
$$

where $V_{\varepsilon}\left(x_{i}\right)$ is the conditional variance of ε_{i}. (depends on $\widehat{\beta}^{G L S}$)

- We make GLS feasible by taking a first-step consistent estimate of $V_{\varepsilon}\left(x_{i}\right)$ (by, say OLS), then solving

$$
\widehat{\beta F G L S}=\arg \min _{\beta} \sum_{i}\left(\frac{y_{i}-x_{i}^{\prime} \beta}{\widehat{V_{\varepsilon}\left(x_{i}\right)}}\right)^{2}
$$

MLE as Weighted Nonlinear Least Squares (cont.)

$$
W^{M L E}\left(x_{i}, y_{i}\right)=\frac{1}{F_{V^{*}}\left(x_{i}^{\prime} \widehat{\beta^{M L E}}\right)\left(1-F_{V^{*}}\left(x_{i}^{\prime} \widehat{\beta^{M L E}}\right)\right)}=\frac{1}{\left.\widehat{V_{V^{*}}\left(x_{i}\right.}\right)}
$$

Because y_{i} is bernoulli.

- Can take first-step consistent estimate of $W^{M L E}\left(x_{i}, y_{i}\right)$ (by, say NLS) then solving wNLS FOC to get $\widehat{\beta^{M L E} E_{1}}$
- Use $\widehat{\beta^{M L E} E_{1}}$ to get $\widehat{W^{M L E}} 1 \rightarrow \widehat{\beta^{M L E} E_{2}} \rightarrow \widehat{W^{M L E}}{ }_{2} \rightarrow \ldots$
- Iterating to convergence gives $\widehat{\beta^{M L E}}$

Going Latent (with Truncation): Tobit

Assume

$$
\begin{aligned}
& y_{i}=\max \left(0, x_{i}^{\prime} \beta+\varepsilon_{i}\right) \\
& \varepsilon_{i} \sim N\left(0, \sigma^{2}\right)
\end{aligned}
$$

Useful normal fact: if $w \sim N\left(\mu, \sigma^{2}\right)$ and c fixed,

$$
E[w \mid w>c]=\mu+\sigma \frac{\phi\left(\frac{\mu-c}{\sigma}\right)}{\Phi\left(\frac{\mu-c}{\sigma}\right)} \text { and } E[w \mid w<c]=\mu-\sigma \frac{\phi\left(\frac{c-\mu}{\sigma}\right)}{\Phi\left(\frac{c-\mu}{\sigma}\right)}
$$

CEF:

$$
\begin{aligned}
E\left[y_{i} \mid x_{i}\right] & =E\left[y_{i} \mid x_{i}, y_{i}=0\right] P\left(y_{i}=0 \mid x_{i}\right)+E\left[y_{i} \mid x_{i}, y_{i}>0\right] P\left(y_{i}>0 \mid x_{i}\right) \\
& =\left(x_{i}^{\prime} \beta+E\left[\varepsilon_{i} \mid x_{i}, \varepsilon_{i}>-x_{i}^{\prime} \beta\right]\right) P\left(\varepsilon_{i}>-x_{i}^{\prime} \beta \mid x_{i}\right) \\
& =\left(x_{i}^{\prime} \beta+\sigma \frac{\phi\left(x_{i}^{\prime} \beta / \sigma\right)}{\Phi\left(x_{i}^{\prime} \beta / \sigma\right)}\right) \Phi\left(x_{i}^{\prime} \beta / \sigma\right) \\
& =x_{i}^{\prime} \beta \Phi\left(x_{i}^{\prime} \beta / \sigma\right)+\sigma \phi\left(x_{i}^{\prime} \beta / \sigma\right)
\end{aligned}
$$

Part 2: Some Facts about IV and 2SLS

Matrix-y IV

Setup:

- $n \times 1$ vector $Y, n \times r$ "endogenous" matrix X_{1}
- $n \times s$ matrix of "controls" $X_{2}, n \times t$ matrix of "instruments" Z_{1}

$$
\begin{align*}
X_{1} & =Z_{1} \pi_{1}+X_{2} \pi_{2}+v \tag{1}\\
Y & =X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon \tag{2}
\end{align*}
$$

Terminology:

- (1) the first stage; (2) the second stage.
- Plugging (1) into (2) gives the reduced form:

$$
\begin{aligned}
y & =\left(Z \pi_{1}+X_{2} \pi_{2}+v\right) \beta_{1}+X_{2} \beta_{2}+\varepsilon \\
& =Z_{1}\left(\pi_{1} \beta_{1}\right)+X_{2}\left(\pi_{2} \beta_{1}+\beta_{2}\right)+\left(v \beta_{1}+\varepsilon\right)
\end{aligned}
$$

- Model is identified if $t \geq r$ (just-identified if $t=r$)
- Exclusion restriction: $E\left[Z^{\prime} \varepsilon\right]=0$ (weak), $E[\varepsilon \mid Z]=0$ (strong)

Matrix-y IV (cont.)

$$
\begin{aligned}
X_{1} & =Z_{1} \pi_{1}+X_{2} \pi_{2}+v \\
Y & =X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon
\end{aligned}
$$

Define:

$$
\begin{array}{ll}
X \equiv\left[\begin{array}{ll}
X_{1} & X_{2}
\end{array}\right], & n \times(r+s) \\
Z \equiv\left[\begin{array}{ll}
Z_{1} & X_{2}
\end{array}\right], & n \times(t+s)
\end{array}
$$

Also define:

$$
P_{Z} \equiv Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime}, P_{2} \equiv X_{2}\left(X_{2}^{\prime} X_{2}\right)^{-1} X_{2}, M_{2} \equiv I-P_{2}
$$

What's $P_{Z} Z=$? $P_{Z} X=$? $M_{2} X_{2}=$? $P_{Z} P_{Z}=$? $P_{Z}^{\prime}=$?

2SLS is an IV Estimator

IV Estimator:

$$
\begin{aligned}
\widehat{\beta^{\prime V}} & \equiv\left(W^{\prime} X\right)^{-1} W^{\prime} Y \\
W & \equiv Z A
\end{aligned}
$$

where $A=(t+s) \times(r+s)$ is some (possibly random) matrix.
Note that when we're just-identified $(t=r) A$ is (probably) invertible, so

$$
\begin{aligned}
\widehat{\beta^{\prime V}} & \equiv\left(A^{\prime} Z^{\prime} X\right)^{-1} A^{\prime} Z^{\prime} Y \\
& =\left(Z^{\prime} X\right)^{-1} A^{\prime-1} A^{\prime} Z^{\prime} Y=\left(Z^{\prime} X\right)^{-1} Z^{\prime} Y
\end{aligned}
$$

\Longrightarrow all IV estimators are (numerically) equivalent when just-id
Two-Stage Least Squares sets $A \equiv\left(Z^{\prime} Z\right)^{-1} Z^{\prime} X$. What's W ?

2 SLS is a second-stage WLS/OLS regression

Two-Stage Least Squares is

$$
\begin{align*}
\widehat{\beta^{2 S L S}} & =\left(\left(Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime} X\right)^{\prime} X\right)^{-1}\left(Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime} X\right)^{\prime} Y \\
& =\left(\left(P_{Z} X\right)^{\prime} X\right)^{-1}\left(P_{Z} X\right)^{\prime} Y \\
& =\left(X^{\prime} P_{Z} X\right)^{-1} X^{\prime} P_{Z} Y \tag{3}\\
& =\left(\left(P_{Z} X\right)^{\prime} P_{Z} X\right)^{-1}\left(P_{Z} X\right)^{\prime} Y \tag{4}
\end{align*}
$$

- (some kinda) Weighted Least Squares, by (3). What are the weights doing?
- (some kinda) Ordinary Least Squares, by (4). What are the regressors?

Just-ID IV is "reduced-form over first-stage"

 $\widehat{\beta^{2 S L S}}$ is OLS of Y on $P_{Z} X$When $r=1$ (one endogenous regressor), $\widehat{\beta_{1}^{2 S L S}}$ is bivariate OLS of Y on $M_{2} P_{Z} X$

$$
\widehat{\beta_{1}^{2 S L S}} \xrightarrow{p} \frac{\operatorname{Cov}\left(y_{i}, \hat{x}_{1 i}^{*}\right)}{\operatorname{Var}\left(\hat{x}_{1 i}^{*}\right)}=\frac{\operatorname{Cov}\left(y_{i}, \hat{x}_{i}^{*}\right)}{\operatorname{Cov}\left(x_{1 i}^{*}, \hat{x}_{1 i}^{*}\right)}
$$

When $t=r$ (just-identified),

$$
\begin{aligned}
\operatorname{Var}\left(\hat{x}_{11}^{*}\right) & =\pi_{1}^{2} \operatorname{Var}\left(Z_{1 i}^{*}\right) \\
\operatorname{Cov}\left(y_{i}, \hat{x}_{1 i}^{*}\right) & =\operatorname{Cov}\left(\left(\pi_{1} \beta_{1}\right) Z_{1}+X_{2}\left(\pi_{2} \beta_{1}+\beta_{2}\right)+\left(v \beta_{1}+\varepsilon\right), \pi Z_{i}^{*}\right) \\
& =\pi_{1}^{2} \beta \operatorname{Var}\left(Z_{1 i}^{*}\right)
\end{aligned}
$$

so that

$$
\widehat{\beta_{1}^{2 S L S}} \xrightarrow[\rightarrow]{p} \frac{\pi_{1}^{2} \beta \sigma_{Z^{*}}^{2}}{\pi_{1}^{2} \sigma_{Z^{*}}^{2}}=\overbrace{\underbrace{}_{F S}}^{\frac{\pi_{1} \beta}{\pi_{1}}}=\beta
$$

MIT OpenCourseWare
http://ocw.mit.edu

14.387 Applied Econometrics: Mostly Harmless Big Data

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

