Introduction to Econometrics

Arthur Campbell

MIT

16th February 2007

Arthur Campbell (MIT)

Introduction to Econometrics

02/16/07 1 / 19

What is a Regression?

Regression Equation

Regression Coefficients, Standard Errors, T-statistics, Level of Significance, R^2 values

Interaction terms

It is a statistical tool for understanding the relationship between different variables

- Usually we want to know the causal effect of one variable on another
- For instance we might ask the question how much extra income do people receive if they have had one more year of education all other things equal?
- When I represents income and E education this is equivalent to asking what is $\frac{\partial I}{\partial E}$?
- To answer this question the econometrician collects data on income and education, and uses it to run a regression equation

The most simple regression is a regression with a single explanatory variable. In the case of income and education this could be

$$I = \beta_0 + \beta_1 E + \varepsilon$$

I is called the dependent (endogenous) variable and E is known as the explanatory (exogenous)

 β_0 and β_1 are the regression co-efficients

 ε is the noise term

This regression equation will put a straight line through the data

Fitting the regression equation

Consider the following set of data on income and education

Figure by MIT OCW and adapted from:

Sykes, Alan. "An introduction to regression analysis." Chicago Working Paper in Law and Economics 020 (October 1993): 4.

The regression will typically fit the line which minimizes the sum of the squared distances of the data points to the line

Figure by MIT OCW and adapted from:

Sykes, Alan. "An introduction to regression analysis." Chicago Working Paper in Law and Economics 020 (October 1993): 7.

The criteria we have used here is

$$\min_{\beta_0\beta_1}\sum \left(y_i-\beta_0-\beta_1X_i\right)^2$$

This determines the values of β_0 and β_1 and hence the position of the line

There are many potential criteria we could use such

$$\min_{\beta_0\beta_1}\sum|y_i-\beta_0-\beta_1X_i|$$

However provided the noise term from earlier ε satisfies certain assumptions the sum of squared distances is optimal

β_0 is the intercept of the line

 β_1 is the slope of the line or in other words is $\frac{\partial I}{\partial F}$

If for instance $\beta_1 = \frac{\partial I}{\partial E} = 15,000$ this would imply that for every additional year of schooling an individual would on average earn \$15,000 more

For a given level of income and education we could now work out the elasticity of income wrt education

Consider now an isoelastic demand curve

$$Q_D = eta_0 P^{eta_1}$$

Now take the logarithm of both sides

$$\ln Q_D = \ln \beta_0 + \beta_1 \ln P$$

We can estimate the following regression relationship

$$\ln Q_D = \ln \beta_0 + \beta_1 \ln P + \varepsilon$$

to determine β_0 and β_1 Here each data point would be $(\ln Q_D, \ln P)$ and the value of the intercept is $\ln \beta_0$ and the slope is β_1 In this log-log specification β_1 is again the derivative of the dependent variable wrt the explanatory variable $\frac{\partial \ln Q_D}{\partial \ln P} = \frac{\partial Q_D}{\partial P} \frac{P}{Q}$ and has the natural interpretation of the elasticity of demand with respect to price In Problem Set 2 you will be asked to calculate elasticities from the regression results

The regression may in fact contain more than one explanatory variable For instance we might think that a person's income is influenced by both the number of years of education and the number of years experience in the labour force

In this case we might run the following multi-variable regression

$$I = \beta_0 + \beta_1 E + \beta_2 L$$

Here we can find the effect education and labour force experience on income separately

Results of a regression

	1975-1980	2001-2006	Continued			
βο	-0.615 (0.929)	-1.697*** (0.587)	Jul	0.031***	0.040*** (0.005)	
In(P)	-0.335*** (0.024)	-0.042*** (0.009)	Aug	0.042*** (0.010)	0.046*** (0.004)	
In(Y)	0.467*** (0.096)	0.530*** (0.058)	Sep	-0.028*** (0.006)	-0.039*** (0.005)	
Jan	-0.079*** (0.010)	-0.044*** (0.006)	Oct	0.002 (0.010)	0.008 (0.005)	
Feb	-0.129*** (0.019)	-0.122*** (0.010)	Nov	-0.058***	-0.032*** (0.004)	
Mar	-0.019*** (0.006)	-0.008 (0.005)	ε _j 's	у	у	
Apr	-0.021	-0.024***	\overline{R}^2	0.85	0.94	
May	0.013	0.026***	<u>σ</u>	0.027	0.011	
	(0.011)	(0.004)		***(p < 0.01)		
Jun	0.020 (0.010)	0.000 (0.004)				

Basic Model: Double Log

Figure by MIT OCW and adapted from: Hughes, J., C. Knittel, and D. Sperling. "Evidence of a shift in the short-run price elasticity of gasoline demand." Center for the Study of Energy Markets Working Paper 159 (2006): Table 1.

Arthur Campbell (MIT)

02/16/07 12 / 19

In the previous slide the regression included 11 dummy variables for the months Jan-Nov

These variables take a value of 1 if the data point was observed during that month and 0 otherwise

They are included to remove any seasonality in the data, a positive value means that there was more (gasoline) consumed during that month compared to the month without a dummy variable (December)

- When the error terms ε are normally distributed it is possible to show that our estimates from the regression of the $\beta's$ are also normally distributed
- Standard errors represent how accurately we have estimated a coefficient
- A very small standard error means it is a very accurate estimate
- In the regression results from earlier these standard errors are typically reported in parantheses beneath the coefficient's value

A t-statistic is used to measure how confident we are given the results of the regression that the true β is different from 0

For instance if we measured a very high value for β with a very small standard error we would be very confident

On the other hand if we found a small value of β with a high standard error we would be far less confident

The t-statistic is calculated as

 $\frac{\beta}{s}$

The magnitude of this term not the sign is what is important since β can be positive or negative

Associated with a t-statistic is a level of significance

The level of significance is the probability we attach to the real value of β being 0 given the evidence we have found through our regression As the magnitude of $\frac{\beta}{s}$ increases the level of significance decreases The significance of an estimate is often indicated with a *,**, or *** the meaning of these is usually indicated below the regression results

Goodness of fit (R-squared)

The goodnesss of fit measure R^2 is a measure of the extent to which the variation of the dependent variable is explained by the explanatory variable(s).

The formula for it is

 $R^{2} = 1 - \frac{\text{sum of squared errors}}{\text{sum of deviations from mean}}$ $R^{2} = 1 - \frac{\sum_{i} (y_{i} - \beta_{0} - \beta_{1} x_{i})^{2}}{\sum_{i} (y_{i} - \overline{y})^{2}}$

where \overline{y} is the average value of y

 $\frac{\text{sum of squared errors}}{\text{sum of deviations from mean}} \text{ is the amount of the total variation of } y \text{ that} \\ \text{is unexplained by the regression, so } 1-\frac{\text{sum of squared errors}}{\text{sum of deviations from mean}} \text{ is the} \\ \text{amount which is explained by the regression} \\ \text{Clearly } R^2 \text{ will be between 0 and 1, values close to 1 indicate good} \\ \end{cases}$

explanatory power

An obvious way to increase the R^2 of a regression is to simply increase the number of explanatory variables since including additional variables cannot decrease its explanatory power The adjusted R^2 is a measure of explanatory power which is adjusted for the number of explanatory variables included in the regression The formula for the adjusted R^2 is

$$R_{\text{Adjusted}}^2 = 1 - \left(1 - R^2\right) rac{n-1}{n-m-1}$$

where n is the number of data points and m is the number of explanatory variables

The adjusted R^2 increases when a new variable is added if the new term improves the model more than would be expected by chance It is always less than the actual R^2

An interaction term is where we construct a new explanatory variable from 2 or more underlying variables

For instance we could multiply two variables together, say Price and Income

The regression equation we would estimate would then be

$$Q_D = \beta_0 + \beta_1 P + \beta_2 Y + \beta_3 P Y$$

We do this if we think that the effect of P on Q_D is different when Y is high or low, and similarly the effect of Y on Q_D is different when P is high or low

Consider the demand elasticity wrt price

$$E_D = \frac{\partial Q_D}{\partial P} \frac{P}{Q} = (\beta_1 + \beta_3 Y) \frac{P}{Q_D}$$

We see here that holding everything else constant increasing Y by 1 unit will increase E_D by $\beta_3 \frac{P}{Q_D}$.