
14.451 Lecture Notes 9

Guido Lorenzoni

Fall 2009

1 Stochastic dynamic programming

Payo¤ function depends on xt; xt+1 and an exogenous shock zt:

F (xt; xt+1; zt) :

The constraint correspondence also depends on zt:

xt+1 2 � (xt; zt) :

The shock zt follows a Markov chain: a �nite set Z and transition probabilities
with P (z0jz) � 0 for all z; z0 2 Z andX

z02Z
P (z0jz) = 1:

Now we will use the pair (xt; zt) as state variable for a recursive approach
and write the functional equation

V (x; z) = max
y2�(x;z)

F (x; y; z) + �
X
z02Z

V (y; z0)P (z0jz) : (FE)

De�ning the sequence problem is cumbersome here: a plan is a map from
sequences zt = (z0; :::; zt) to actions xt, we can write them as x (zt) and then
write

E

" 1X
t=0

�tF
�
x
�
zt
�
; x
�
zt+1

�
; zt
�
j z0

#
where the conditional expectation is formed using the probability distribution
on zt generated by the transition probabilities above (e.g. the probability of
zt = (z0; :::; zt) is equal to P (ztjzt�1)P (zt�1jzt�2) :::P (z1jz0)).
Let us assume:

� X is a compact subset of Rl;

� F is bounded and continuous;

� � (x; z) is non-empty, compact-valued and continuous.
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With a �nite set Z the treatment of the principle of optimality is very similar
to the non-stochastic case. Moreover, under our assumptions, we can use the
contraction mapping theorem as in the non-stochastic case to show that a unique
solution to (FE) V (x; z) exists, is bounded and continuous. In this case the
principle of optimality can be easily applied to show that V (x; z) corresponds
to the value function for the sequence problem.
Also, we can use the contraction mapping approach to characterize the value

function V (x; z) (making more assumptions we can establish monotonicity, con-
cavity, di¤erentiability).
Things are technically more challenging if we want to allow for continuous

random variables, then we have a Markov process for z, with transition function:
Q (z;A) is the probability that the shock tomorrow is z0 2 A if the shock today
is z. That is, Q (z; :) is a probability measure on the space Z (this requires
that we de�ne a �-algebra Z of measurable sets on Z, so we can properly de�ne
Q (z;A) for all sets A 2 Z). SLP has a full treatment of the general case.

1.1 Stochastic Dynamics

The crucial di¤erence here is the analysis of the dynamics: the solution to (FE)
gives us a policy which now is a function of xt and zt (suppose from now on
that the policy is unique)

xt+1 = g (xt; zt) :

How do we analyze this policy?

� start at x0; z0, and �nd x1 = g (x0; z0),

� then x2 is a random variable, that takes the values g (x1; z1) with proba-
bilities P (z1jz0),

� continue... x3; x4; x5::: all random variables,

� �nd probability distribution Pr ((xt; zt) j (x0; z0)) for all t.

Question is Pr ((xt; zt) j (x0; z0)) converging somewhere? Does it depend on
the initial condition (x0; z0)? What does it means for a probability distribution
to converge?
First, notice that the optimal policy, being recursive, gives us a new Markov

process, not just on the space Z but on the space S � X � Z, with transition
function:

Q ((x; z) ; A) =

� P
fz0:(x0;z0)2Ag P (z

0jz) if x0 = g (x; z)
0 otherwise

:

So all our questions can be addressed studying the properties of this Markov
process.
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1.1.1 Finite state space (Markov Chains)

Let us start from the case where also X is �nite, so the Markov process on
S � X � Z boils down to a Markov chain with transition probabilities

� ((x0; z0) j (x; z)) =
�
P (z0jz) if x0 = g (x; z)
0 otherwise

:

List the states (x; z) 2 S and index them by i = 1; 2; :::;m and then we have
a m�m transition matrix � and we can compute �n for any n.
Call �(n)i;j the i; j element of �

t: this is the probability of going from i to j
in n periods.
Various behaviors:

� there can be transient states: a state j such that if pi = 0 then [p�]i = 0
(once you are not in i you can never go back);

� there are self-replicating sets of states: a set of states A such that ifP
i2A pi = 1 then

P
[p�]i = 1 (S is one);

� there are ergodic sets: a self-replicating set of states E such no proper
subset of E is also self-replicating (at least one must exist);

� there can be cyclically moving subsets.

Some properties about convergence of Markov chains can be established in
general. Here we focus on a convergence result which is nice because it let�s us
use once more the contraction mapping theorem.
De�ne set �m as the set of probability distributions on S (i.e. the set of

vectors p 2 Rm such that pi � 0 and
Pm

i=1 pi = 1).
The transition matrix � de�nes a mapping

� : �m ! �m

To use the contraction mapping theorem we need a metric on �n we will
use the total absolute deviation:

kp� qk �
mX
j=1

jpj � qj j : (1)

Theorem 1 Suppose for some state |̂ we have �i;|̂ > 0 for all i, then S has a
unique ergodic set with no cyclically moving subsets and fp0�ng converges to a
unique invariant distribution p� for all p0 2 �m.

Proof. Let "j = mini �i;j . Notice that �i;j � "j � 0. Notice also that

[p�� q�]j =
mX
i=1

pi�i;j �
mX
i=1

qi�i;j =
mX
i=1

(pi � qi) (�i;j � "j) +
mX
i=1

(pi � qi) "j =

=
mX
i=1

(pi � qi) (�i;j � "j)
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because
Pm

i=1 (pi � qi) = 1�1. Then we have the following chain of inequalities

kp�� q�k =
mX
j=1

�����
mX
i=1

(pi � qi) (�i;j � "j)
�����

�
mX
j=1

mX
i=1

jpi � qij (�i;j � "j) �
mX
i=1

jpi � qij
mX
j=1

(�i;j � "j)

= (1� "|̂) jjp� qjj :

Since "|̂ > 0, by assumption, the mapping � is a contraction with modulus
(1� "|̂) and has a unique �xed point p�. Moreover for any p we have

kp�n � p�k � (1� "|̂) kp� p�k

which implies that p�n converges to p� for any initial condition p.
It is easy to extend this result to a more general condition: there is a state

|̂ such that for some n � 1 we have �(n)i;j > 0 for all i. That is, there is a state
that can be reached with positive probability from any initial condition after n
periods.
Then use the fact that the matrix

~� = �n

is also a transition matrix and apply the theorem above. (See Theorems 11.3
and 11.4 in SLP).

1.1.2 Weak convergence

We won�t go into the general case where X (or also Z) are subsets of Rl. How-
ever, the idea of the theorem above can be extended (see Theorem 11.12 in
SLP) and many other type of convergence results are also available when the
conditions for that theorem are not met (check out Chapter 11).
It is useful to know that often people use a convergence notion for probability

measures on Euclidean spaces that is a bit di¤erent from the convergence notion
used above. In particular, people focus on weak convergence.
Example: suppose you have a sequence of probability measures �n on [0; 1]

(with the Borel algebra B). Each measure �n is degenerate with �n (f1=ng) = 1.
Now it seems natural to say that f�ng converges to a distribution that puts all
the probability at 0, i.e. to the probability measure � with � (f0g) = 1. However,
if we use any metric that looks at the distance between �n (A) and � (A) for
di¤erent sets (like (1) was doing) we are in trouble. We have

�n (f0g) = 0 for all n

so
lim
n
�n (f0g) = 0 6= 1 = � (f0g) :
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The problem is that this approach does not take into account that 1=n and 0
are close to each other when n is large.
Therefore a more appealing approach is to compare measures looking at how

they integrate continuous functions. We have then the following:

De�nition 2 A sequence of measures f�ng on the space ([0; 1] ;B) converges
weakly to the measure � (on the same space) i¤

lim
n!1

Z 1

0

fd�n =

Z 1

0

fd� for all continuous functions on [0; 1] .

With this notion of convergence the sequence in our example does indeed
converge to a degenerate distribution at 0. Chapter 12 of SLP provides condi-
tions for weak convergence of Markov processes on Euclidean spaces and for the
existence and uniqueness of an invariant probability measure.
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