14.452 Review session

Ludwig Straub

MIT

December 2016

Ludwig Straub (MIT)

Logistics

- Exam next Monday
- Greg will proctor
- Open book & lecture notes
- 3-4 short questions, 1-2 long questions

Determinants of growth

• Definition

$$Y = F(A, K, L, H)$$

where

- *A* = technology
- *K* = physical capital
- L = labor force
- *H* = human capital / education

• Only proximate causes, not fundamental

- such as geography, luck, institutions, preferences
- Acemoglu Naidu Restrepo Robinson (2014): Democracy causes $\approx 1\%$ higher GDP growth

Why write a model of growth?

- For each proximate cause X, want guidance on: (among others)
 - How do **fundamental causes** affect the growth of X?
 - Under what conditions can there be sustained growth in X?
 - What kind of **policies** can help **accumulate** more X?
 - What kind of **policies** can increase welfare? (if at all?)
 - How can we **measure** contribution of growth in X empirically?
- These Qs require a model with endogenous accumulation of X
 - will do this for A, K. H similar to K

Common theme

- In background: \exists "accumulation technology" of X
 - concave \Rightarrow exogenous growth
 - linear \Rightarrow endogenous growth

An aside on TVCs

- TVC: part of sufficient conditions for optimum in any infinite horizon optimal control problem
 - e.g. a representative household's problem, or a planning problem
- When there is a some lower bound on wealth, it is

$$\lim_{t\to\infty} \underbrace{e^{-(\rho-n)t}u'(c_t)}_{\sim e^{-(r-n)t}} \text{wealth}_t = 0$$

so we can write

$$\lim_{t\to\infty} e^{-rt} \text{TotalWealth}_t = 0$$

where TotalWealth is the whole current generation's wealth

 In pretty much any model, TotalWealth grows at rate g_Y, so along BGP this means

$$r > g_{\mathsf{TotalWealth}} = g_Y$$

Ludwig Straub (MIT)

Outline

1 Solow model: K

- Uzawa's theorem
- Solow models
- Data
- **2** NGM and OLG: still K
 - NGM
 - OLG & dynamic inefficiency
- \odot Neoclassical endogenous growth: still K
- Endogenous technology: A
- **5** World technology growth: A
- **6** DTC: What kind of A?

Section 1

Solow model: K

Subsection 1

Uzawa's theorem

How should technology affect production?

- Could be Hicks, Solow, Harrod neutral
- Uzawa: If $Y = \tilde{F}(K, L, t)$ and
 - capital accumulates as $\dot{K} = Y C \delta K$
 - K, Y, C grow exponentially
- Then:
 - $g_K = g_Y = g_C$
 - can always write it as Harrod neutral, Y = F(K, A(t)L) for some $A(t), g_A = g_Y n$
 - if $R = \tilde{F}_K = const \Rightarrow R = F_K = \tilde{F}_K$

Subsection 2

Solow models

Solow model: concave accumulation

- Using Uzawa \Rightarrow focus on Y = F(K, AL)
- Constant savings rate s
- Capital accumulation

$$\dot{K} = sF(K, AL) - \delta K$$

- A exogenous, F CRS, with Inada conditions
- Solve? \rightarrow Recitation #2

Results: exogenous growth

- Define $k \equiv K/(AL)$ (more generally $k \equiv e^{-gt}K$)
- Unique positive steady state k*, globally stable

$$\frac{f(k^*)}{k^*} = \frac{\delta + n + g}{s}$$

• Exogenous growth,
$$\dot{Y}/Y = n + g$$

• If you can pick s, i.e. $k^* = k^*(s)$, consumption largest if $k^*(s) = k^*_{gold}$ (golden rule)

$$f'(k_{gold}^*) = \delta + n + g$$

• $k^* > k^*_{gold}$: have "dynamic inefficiency" (but not well defined here)

AK version: sustained growth

- Fix *A*.
- $F = AK \Rightarrow$

$$\dot{K} = sAK - \delta K$$

 $g_K = sA - \delta$

• No transitional dynamics

Subsection 3

Data

Data

How much does each proximate cause account for growth?

Within countries: Growth accounting

$$g_Y = s_K g_K + s_L g_L + \underbrace{x}_{\text{effect of } A}$$

- OECD countries: 40-50% capital, 30-50% TFP
- LDCs: less TFP, more labor
- mismeasurement issues from capital prices & human capital

How much does each proximate cause account for cross-country GDP differences?

- Across countries: Development accounting
- Idea: Make functional form assumption for Y and compare across countries, e.g.

$$\frac{Y}{L} = A \left(\frac{K}{L}\right)^{\alpha} \left(\frac{H}{L}\right)^{\beta}$$

- Two approaches:
 - **1** assume A_j exogenous \Rightarrow figure out $\alpha, \beta \& R^2$
 - **2** pick value for $\alpha, \beta \Rightarrow \text{Recover } A_j$'s

Data

1) Mankiw Romer Weil

• Assume Solow-type accumulation of K and $H \rightarrow$ evaluate at steady state

$$\log y_j^* = gt + \frac{\alpha}{1 - \alpha - \beta} \log \frac{s_{k,j}}{n_j + g + \delta_k} + \frac{\beta}{1 - \alpha - \beta} \log \frac{s_{h,j}}{n_j + g + \delta_h} + \log A_j$$

- Large R^2 around 70%, α , $\beta \approx 0.30$
- But:
- Strong assumption that log A_j is uncorrelated with s_{k,j}, s_{h,j}
 - biases α , β , R^2 upwards
- Huge value of β relative to Mincerian estimates

2) Hall Jones 1999

- Construct H from Mincerian regression
- Recover

$$\frac{A_j}{A_{US}} = \left(\frac{Y_j}{Y_{US}}\right)^{3/2} \left(\frac{K_{US}}{K_j}\right)^{1/2} \left(\frac{H_{US}}{H_J}\right)$$

- Find larger role for technology
- Assumptions
 - no human capital externalities + other assumptions to construct K, H
 - Cobb-Douglas Y with same $\alpha! (\rightarrow can be somewhat more flexible)$

Section 2

NGM and OLG: still K

Subsection 1

NGM

Baseline NGM

• Endogenize savings rate: Representative household solving

$$\max_{c,k} \int_0^\infty e^{-(\rho-n)t} u(c_t) dt$$

- Assume $\rho > n$, $u(c) = \frac{c^{1-\theta}}{1-\theta}$. For now: A = 1.
- Equilibrium efficient (single agent) \Rightarrow Planner

$$\max_{c,k} \int_0^\infty e^{-(\rho-n)t} u(c_t) dt$$
$$c_t + \dot{k}_t = f(k) - (\delta + n)k$$
$$k_0 \text{ given}$$

NGM FOCs

• Euler (always holds for **per capita** *c*)

$$\frac{\dot{c}}{c} = \frac{1}{\theta} \left(f'(k) - \delta - \rho \right)$$

TVC

$$\lim_{t\to\infty} e^{-(\rho-n)t} u'(c_t)k_t = 0$$

- Illustrate dynamics in **phase diagram.** TVC pins down a single stable arm!
- Can do comparative dynamics ...
- With growth: Use c/A and k/A

Subsection 2

OLG & dynamic inefficiency

The problem with infinite households

- With ∞ households, planner is allowed to redistribute along an infinite chain of households
- Can violate FWT if value of endowments is infinite \rightarrow dynamic inefficiency
- Here: only canonical OLG model with
 - L = const
 - Cobb-Douglas technology $f(k) = k^{\alpha}$
 - log utility
 - δ = 1

Canonical OLG model

• Generation t solves

$$egin{aligned} \max\log c_1(t)+eta\log c_2(t)\ c_1(t)+k(t)&\leq w(t)\ c_2(t)&\leq R(t+1)k(t) \end{aligned}$$

giving

$$k(t) = \frac{\beta}{1+\beta}w(t) = \frac{\beta}{1+\beta}(1-\alpha)k(t)^{\alpha}$$

• Unique positive steady state k^* , globally stable

Dynamic inefficiency

- But: possibly $k^* > k^*_{gold}$, i.e. $R^* < 1$: dynamic inefficiency
- Can be cured by
 - redistribution from young to old (unfunded social security)
 - less saving
 - government debt
 - money

Section 3

Neoclassical endogenous growth: still K

Neoclassical AK model

- Except for the Solow AK economy: No endogenous growth model so far! Here: NGM version of AK...
- Assume $f(k) = Ak \Rightarrow$

$$\frac{\dot{c}}{c} = \frac{1}{\theta} \left(A - \delta - \rho \right)$$
$$\dot{k}_t = Ak - (\delta + n)k - c$$
• Hence $g_c = \frac{1}{\theta} \left(A - \delta - \rho \right), \ r = A - \delta$ • Need:

$$r > g_Y = g_C = g_c + n$$

Here: Tax changes affect growth rates!

0

Rebelo AK

- Same AK structure now produces capital, using capital as input
- Final output is consumed $C = BK_C^{\alpha}L_C^{1-\alpha}$, relative price of capital goes to zero
- Easiest way to analyze: Planning problem!

Romer 1986: Growth with externalities

- Assume Y = F(K, AL) with A = BK uninternalized "learning by doing"
- Then:

$$R = F_{\mathcal{K}}(\mathcal{K}, \mathcal{AL}) = F_{\mathcal{K}}(1, \mathcal{BL}) = const$$

so from Euler we get $g_C = \frac{1}{\theta} \left(R - \delta - \rho \right)$

TVC requires

$$r > g_Y = g_C$$

• Not Pareto optimal due to externalities!

Section 4

Endogenous technology: A

Endogenous technology models

- Discussed the mechanics in Recitation #4 at length. Here: Overview
- 3 models of endogenous A:
 - Lab Equipment, Knowledge Spillovers: expanding varieties N
 - Schumpeterian: quality Q
- Key: Technology is excludable, even if non-rival
 - hence inventors can earn monopoly rents
- Abstract from K

Lab Equipment (Romer 1990)

- Innovation possibilities frontier: $\dot{N} = \eta Z$
- Find BGP with $r = \eta \beta L$ and $g_C = \frac{1}{\theta} (\eta \beta L \rho)$
- Two types of externalities
 - "new good" externalities
 - monopoly distortion / aggregate demand externalities

• \Rightarrow social planner values varieties more & prefers higher growth!

- Implement using two instruments:
 - subsidies to research
 - subsidies to intermediate good inputs
- More competition lowers growth! (but raises current output)

Knowledge spillovers

- Innovation possibilities frontier: $\dot{N} = \eta N L_R$
- Find BGP with $r = (1 \beta) (\eta L g)$
- New externality: Spillovers \rightarrow even stronger reason for planner to boost growth!

Scale effects

- These models have scale effects
- Higher $L \Rightarrow$ higher growth rate
- Problematic because
 - L grows in practice
 - higher $L \not\Rightarrow$ higher growth
- Variant: $\dot{N} = \eta N^{\phi} L_R$, $\phi < 1$ but population growth
- akin to "concave" technology, hence exogenous growth $g_Y = \frac{n}{1-\phi} + n$

Schumpeterian model

- Quality improvements, rather than more gadgets
- Creative destruction
- Find $r = \eta \lambda \beta L \frac{g}{\lambda 1}$
- New business stealing externality
- Planner does not necessarily want to boost growth!

Section 5

World technology growth: A

Model with technology spillovers

• Lab Equipment model in each country, "anchored" to world technology $N_t = e^{gt} N_0$

$$\dot{N}_j = \eta_j \left(\frac{N}{N_j}\right)^{\phi} Z_j$$

where $\phi > 0$. At BGP:

$$g_{N_j} = g$$
$$\frac{N_j}{N} = \left(\frac{\eta_j \beta L_j}{\zeta_j r^*}\right)^{1/\phi}$$

• If $N = \frac{1}{J} \sum N_j \Rightarrow$

$$g = \frac{1}{\theta} \left(\frac{1}{J} \sum \left(\frac{\eta_j \beta L_j}{\zeta_j} \right)^{1/\phi} \right)^{\phi}$$

Remarks

- g taken as given by each country, but endogenously determined by the countries
- Instead of modelling technology spillovers, **terms of trade effects** can also synchronize growth rates along the world
 - opposite also interesting: trade causing asymmetric growth rates (e.g. "infant industries")

Section 6

DTC: What kind of A?

Why DTC?

- Technology often **directed at certain factors** (e.g. skill biased techn change)
- E.g.

$$Y = F(A_L L, A_H H)$$

• What determines profitability of that? e.g.

• Let s_H be share of income going to $A_H H$

• Then:

$$\frac{\partial Y}{\partial A_H} = \frac{Y}{A_H} s_H$$

Relative profitability

• This gives a measure for relative profitability:

$$\frac{\frac{\partial Y}{\partial A_H}}{\frac{\partial Y}{\partial A_L}} = \left(\frac{A_H}{A_L}\right)^{-1} \frac{s_H}{s_L}$$

- with CES with ES ϵ : s_H/s_L depends on A_HH/A_LL
 - increasing if $\epsilon > 1$
 - decreasing if $\epsilon < 1$

Equilibrium bias

- Weak equilibrium bias: Increase in $H/L \Rightarrow$
 - A_H/A_L increases if $\epsilon > 1$
 - A_H/A_L decreases if $\epsilon < 1$
- Both times: technology response biased towards H/L!
- Strong equilibrium bias: Increase in H/L ⇒ relative wage w_H/w_L increases
- Upward sloping demand curve

Endogenous DTC model

• Benefit of innovating in sector H

$$V_{H} = \frac{\beta p_{H}^{1/\beta} H}{r^{*}}$$
$$\frac{V_{H}}{V_{L}} = const \times \left(\frac{N_{H}}{N_{L}}\right)^{-1} \underbrace{\left(\frac{N_{H} H}{N_{L} L}\right)^{(\sigma-1)/\sigma}}_{\sim s_{H}/s_{L}}$$

• BGP: $V_H/V_L = \eta_L/\eta_H \Rightarrow$

$$\frac{N_H}{N_L} = const \times \left(\frac{H}{L}\right)^{\sigma-1}$$

14.452 Economic Growth Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.