Midterm Exam Solution

1. The first order condition for consumption is

$$
e^{-b c_{i}}=\mu p_{i}
$$

and solving for consumption yields

$$
c_{i}=-\frac{1}{b}\left[\log \left(p_{i}\right)+\log (\mu)\right] .
$$

Substituting into the budget constraint yields

$$
-\frac{1}{b} \log (\mu)=\bar{c}
$$

where \bar{c} is defined in the problem.
2. Firm i maximizes

$$
p_{i}\left[\bar{c}-\frac{1}{b} \log \left(p_{i}\right)\right]
$$

The first order condition is

$$
\bar{c}-\frac{1}{b} \log \left(p_{i}\right)-\frac{1}{b}=0
$$

and so the firm will charge $p_{i}=e^{b \bar{c}-1}$.
3. Using the normalization, profits are given by \bar{c}, and due to free entry profits must go to workers. A firm employs \bar{l} units of labor, so $w=\frac{\bar{c}}{\bar{l}}$. The price normalization also implies $\bar{c}=\frac{1}{b}$, so we get $w=\frac{1}{b l}$. From labor market clearing $N \frac{\bar{l}}{L}=1$ we get the number of goods $N=\frac{L}{l}$. Income of a worker is given by $w L=\frac{L}{b l}$ and falls with \bar{l} as profits have to be distributed among more workers.
4. The utility of a worker is

$$
N \frac{1-e^{-b \bar{c}}}{b}=\frac{\bar{l}}{L} \frac{1-\frac{1}{e}}{b}
$$

Only the ratio $\lambda \equiv \frac{\bar{l}}{L}$ matters, and higher productivity is associated with higher utility.
5. Managers receive what is left of profits after workers have been paid:

$$
\omega(q)=\frac{1}{b}-w \frac{\bar{l}}{q}
$$

6. The left hand side is the supply of workers, the right hand side is the demand for workers. Again only the ratio $\lambda=\frac{\bar{l}}{L}$ matters, and differentiating this yields

$$
\frac{\partial q^{*}}{\partial \lambda}=\frac{\int_{q^{*}}^{q_{\max }} \frac{f(q)}{q} d q}{f\left(q^{*}\right)\left[1+\frac{\lambda}{q^{*}}\right]}
$$

Using the equation implicitly defining q^{*} one can also write

$$
\frac{\partial q^{*}}{\partial \lambda} \frac{\lambda}{q^{*}}=\frac{F\left(q^{*}\right)}{f\left(q^{*}\right)\left[q^{*}+\lambda\right]}
$$

Substituting the assumed distribution function and density yields

$$
\frac{\partial q^{*}}{\partial \lambda} \frac{\lambda}{q^{*}}=\frac{q^{*}-q_{\min }}{q^{*}+\lambda}<1
$$

which insures that $\frac{\bar{l}}{q^{*}}$ is increasing in \bar{l}.
7. The manager with ability q^{*} must be indifferent between managing and working, so we must have

$$
w L=\frac{1}{b}-w \frac{\bar{l}}{q^{*}}
$$

and so

$$
w=\frac{\frac{1}{b}}{L+\frac{\bar{l}}{q^{*}}}
$$

We can write

$$
w L=\frac{\frac{1}{b}}{1+\frac{\lambda}{q^{*}}}
$$

8. The absolute wage level clearly falls. The number of firms and thus the number of managers is $N=1-F\left(q^{*}\right)$ and falls. If income is R, then utility is

$$
U(R, N)=N \frac{1-e^{-b \frac{R}{N}}}{b}
$$

We already know that the income of a worker $w L$ falls, which reduces utility. We also know that N falls. It remains to show that the fall in N also reduces utility. We have

$$
\frac{\partial U}{\partial N}=\frac{1}{b} g\left(b \frac{R}{N}\right)
$$

where

$$
g(x)=1-e^{-x}-x e^{-x}
$$

We have $g(0)=0$ and $g^{\prime}(x)=1+x e^{-x}$, so utility is increasing in N.
We have

$$
\frac{\omega(q)}{w L}=\frac{1}{b w L}-\frac{\lambda}{q}=1+\frac{\lambda}{q^{*}}-\frac{\lambda}{q}
$$

Define

$$
h(\lambda, q)=1+\lambda\left(\frac{1}{q^{*}(\lambda)}-\frac{1}{q}\right)
$$

We have

$$
\frac{\partial h(\lambda, q)}{\partial \lambda}=\frac{1}{q^{*}(\lambda)}-\frac{1}{q}-\lambda \frac{1}{\left(q^{*}\right)^{2}} \frac{\partial q^{*}}{\partial \lambda}
$$

Evaluating this at $q=q^{*}$ yields

$$
\frac{\partial h\left(\lambda, q^{*}\right)}{\partial \lambda}=-\lambda \frac{1}{\left(q^{*}\right)^{2}} \frac{\partial q^{*}}{\partial \lambda}<0,
$$

so inequality between workers and low-quality managers falls. Now

$$
\frac{\partial^{2} h(\lambda, q)}{\partial \lambda \partial q}=\frac{1}{q^{2}}
$$

and

$$
\lim _{q \rightarrow \infty} \frac{\partial h(\lambda, q)}{\partial \lambda}=\frac{1}{q^{*}(\lambda)}\left[1-\frac{\partial q^{*}}{\partial \lambda} \frac{\lambda}{\left(q^{*}\right.}\right]>0
$$

so inequality between production workers and high-quality managers increases (although $q_{\max }$ may not be high enough to have an increase in inequality).
Finally we have

$$
\frac{\omega\left(q^{\prime}\right)}{\omega(q)}=\frac{h\left(q^{\prime}, \lambda\right)}{h(q, \lambda)}
$$

and this will be increasing if the elasticity

$$
\frac{\partial h}{\partial \lambda} \frac{\lambda}{h}=\frac{\lambda\left(\frac{1}{q^{*}(\lambda)}-\frac{1}{q}\right)-\lambda^{2} \frac{1}{\left(q^{*}\right)^{\frac{2}{2}}} \frac{\partial q^{*}}{\partial \lambda}}{1+\lambda\left(\frac{1}{q^{*}(\lambda)}-\frac{1}{q}\right)}
$$

is increasing in q. This is the case if

$$
\frac{\lambda}{q^{2}}\left[1+\lambda\left(\frac{1}{q^{*}(\lambda)}-\frac{1}{q}\right)\right]-\frac{\lambda}{q^{2}}\left[\lambda\left(\frac{1}{q^{*}(\lambda)}-\frac{1}{q}\right)-\lambda^{2} \frac{1}{\left(q^{*}\right)^{2}} \frac{\partial q^{*}}{\partial \lambda}\right]>0
$$

which is satisfied.

