Gilles Saint-Paul
14.462 Spring 2004

Problem set 1
When does it pay to use two technologies at the same time?
Assume that output can be produced using two technologies, labelled by 1 and 2 . The production functions are given by

$$
\begin{aligned}
& Y_{1}=K_{1}^{\alpha} L_{1}^{1-\alpha} \\
& Y_{2}=K_{2}^{\beta} L_{2}^{1-\beta}
\end{aligned}
$$

1. Show that if the two technologies are used, the capital labor ratio in technology 2 must be equal to

$$
\begin{aligned}
& k_{2}=\frac{K_{2}}{L_{2}}=\left(\frac{\alpha}{\beta}\right)^{\frac{\alpha}{\beta-\alpha}}\left(\frac{1-\alpha}{1-\beta}\right)^{\frac{1-\alpha}{\beta-\alpha}} \\
& k_{1}=\frac{K_{1}}{L_{1}}=\left(\frac{\beta}{\alpha}\right)^{\frac{\beta}{\alpha-\beta}}\left(\frac{1-\beta}{1-\alpha}\right)^{\frac{1-\beta}{\alpha-\beta}}
\end{aligned}
$$

Show that this entirely determines factor prices and the allocation of labor and capital between the two technologies.
2. Show that if $\alpha=1 / 3, \beta=2 / 3$, total capital is K and total labor is L, then

$$
\begin{aligned}
k_{2} & =2 \\
k_{1} & =1 / 2 \\
L_{2} & =\frac{2 K-L}{3} \\
L_{1} & =\frac{4 L-2 K}{3} .
\end{aligned}
$$

3. Between which bounds must the aggregate K / L lie for the two technologies to be used in equilibrium?
4. Show that if K / L is between these two bounds, then they will actually be used in equilibrium.
5. Can you explain what is going on in the (K, L) plane?
