14.462 Lecture Notes
 Aiyagari and Krusell-Smith

George-Marios Angeletos
MIT Department of Economics

Spring 2004

1 The Economy

- $i \in[0,1]$.
- Employment $l\left(s_{t}\right)=s_{t}$ i.i.d. across i (but not necessarily across t), with support $\mathbf{S}=\left\{s_{\text {min }}, \ldots, s_{\text {max }}\right\}, s_{\text {min }}>0$. Let $\pi\left(s^{\prime} \mid s\right)=\operatorname{Pr}\left(s_{t+1}=s^{\prime} \mid s_{t}=s^{\prime}\right)$ and $\pi(s)=$ $\operatorname{Pr}\left(s_{t}=s\right)$. Note that $\sum_{s^{\prime}} \pi\left(s^{\prime} \mid s\right)=1$ for all s and $\pi\left(s^{\prime}\right)=\sum_{s} \pi\left(s^{\prime} \mid s\right) \pi(s)$.
- Normalize $\mathbb{E} s=1$.
- Preferences:

$$
\mathbb{E}_{0} \mathcal{U}=\mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} U\left(c_{t}\right)
$$

- Budget and borrowing constraint:

$$
c_{t}+a_{t+1}=w_{t} s_{t}+\left(1+r_{t}\right) a_{t}-\tau_{t}
$$

$$
\begin{aligned}
a_{t} & =k_{t}-b_{t} \\
c_{t} & \geq 0 \\
k_{t} & \geq 0 \\
b_{t} & \leq \bar{b}_{t} \\
a_{t+1} & \geq-\bar{b}_{t}
\end{aligned}
$$

- The asset grid:

$$
a_{t+1} \in \mathbf{A}=\left\{a^{1}, a^{2}, \ldots, a^{N}\right\}
$$

where $a^{1}=-\bar{b}$, or

$$
a_{t+1} \in \mathbf{A}=[-\bar{b}, \infty)
$$

- \bar{b} is the borrowing limit. Either exogenous to the economy; or endogenous.
E.g.:

$$
\begin{aligned}
\bar{b}_{t} & =\inf _{\left\{s_{t+j}\right\}_{j=1}^{\infty}} \sum_{j=1}^{\infty}\left(q_{t+j} / q_{t}\right)\left[\left(w_{t+j} s_{t+j}-\tau_{t+j}\right)\right] \\
& =\sum_{j=0}^{\infty}\left[\left(q_{t+j} / q_{t}\right)\left(w_{t+j} s_{\min }-r_{t+j} D\right)\right] \\
q_{t} & \equiv \frac{q_{t-1}}{1+r_{t}}
\end{aligned}
$$

Remark: If there is a steady state point $\left(w_{t}, r_{t}\right) \rightarrow(w, r)$, then:

$$
\begin{aligned}
\tau_{t} & \rightarrow \tau=r D \\
\bar{b}_{t} & \rightarrow \frac{w s_{\min }-r D}{r}=\frac{w s_{\min }}{r}-D
\end{aligned}
$$

2 Equilibrium

- Let

$$
\Phi_{t}(a, s)=\operatorname{Pr}\left(a_{t}=a \text { and } s_{t}=s\right)
$$

denote the joint probability of a and s in period t.

- The distribution of wealth in period t is given by

$$
\psi_{t}(a)=\sum_{s \in \mathbf{S}} \Phi_{t}(a, s)=\operatorname{Pr}\left(a_{t}=a\right)
$$

- Market clearing:

$$
K_{t}+D=\sum_{a \in \mathbf{A}} a \psi_{t}(a)
$$

where D is (exogenous) government debt and K_{t} is aggregate (and per capita) capital.

- Equilibrium prices:

$$
\begin{aligned}
r_{t} & =f^{\prime}\left(K_{t}\right)-\delta \equiv r\left(K_{t}\right) \\
& \Leftrightarrow K_{t}=\kappa\left(r_{t}\right) \\
w_{t}= & f\left(K_{t}\right)-f^{\prime}\left(K_{t}\right) K_{t} \equiv w\left(K_{t}\right) \\
\Leftrightarrow & w_{t}=\omega\left(r_{t}\right)
\end{aligned}
$$

2.1 Recursive Equilibrium

- Suppose that, in equilibrium, the law of motion for the distribution of wealth is some functional Γ s.t.:

$$
\Phi_{t+1}=\Gamma\left(\Phi_{t}\right)
$$

This means that the evolution of Φ_{t} is deterministic.

- Given Φ_{t} we can compute K_{t} by simply integrating:

$$
K_{t}=\mathbf{K}\left(\Phi_{t}\right)
$$

It follows that $w_{t}=w\left(\Phi_{t}\right)$ and $r_{t}=r\left(\Phi_{t}\right)$, as well as

$$
\bar{b}_{t}=b\left(\Phi_{t}\right)
$$

Then, we can expresse the problem of the household in recursive form, provided we let Φ_{t} be a state variable.

- A recursive equilibrium is given by (V, A, Γ) such that:

1. V solves the Bellman equation;
and A is the corresponding optimal choice:

$$
\begin{aligned}
& V(a, s, \Phi)=\max U(c)+\beta \sum_{s^{\prime} \in \mathbf{S}} V\left(a^{\prime}, s^{\prime}, \Phi^{\prime}\right) \pi\left(s^{\prime} \mid s\right) \\
& \text { s.t. } \quad a^{\prime}=w\left(\Phi^{\prime}\right) s^{\prime}+\left[1+r\left(\Phi^{\prime}\right)\right][a-c]-r\left(\Phi^{\prime}\right) D \\
& 0 \leq c \leq a, \quad a^{\prime} \in \mathbf{A}(\Phi), \\
& \Phi^{\prime}=\Gamma(\Phi) \\
& A(a, s, \Phi)=\arg \max \{\ldots\}
\end{aligned}
$$

2. Γ is generated by A;
that is, Γ maps Φ to Φ^{\prime} such that

$$
\Phi^{\prime}\left(a^{\prime}, s^{\prime}\right)=\sum_{s \in \mathbf{S}} \Phi(a, s) \mathbf{1}_{\left[A(a, s, \Phi)=a^{\prime}\right]} \pi\left(s, s^{\prime}\right)
$$

- The equilibrium path of the economy is then given by $\left\{\Phi_{t}\right\}_{t=0}^{\infty}$ such that

$$
\Phi_{t+1}=\Gamma\left(\Phi_{t}\right)
$$

for given initial Φ_{0}.

- Remark: I write

$$
K_{t+1}+D=\sum_{a \in \mathbf{A}} a \psi_{t+1}(a)
$$

whereas SL write

$$
K_{t+1}+D=\sum_{s \in \mathbf{S}, a \in \mathbf{A}} A\left(a, s, \Phi_{t}\right) \Phi_{t}(a, s)
$$

The two expressions are equivalent:

$$
\begin{aligned}
K_{t+1}+D & =\sum_{a^{\prime} \in \mathbf{A}} a^{\prime} \psi_{t+1}\left(a^{\prime}\right)= \\
& =\sum_{a^{\prime} \in \mathbf{A}} \sum_{s^{\prime} \in \mathbf{S}} a^{\prime} \Phi_{t+1}\left(a^{\prime}, s^{\prime}\right) \\
& =\sum_{a^{\prime} \in \mathbf{A}} \sum_{s^{\prime} \in \mathbf{S}} a^{\prime} \sum_{s \in \mathbf{S}, a \in \mathbf{A}} \Phi_{t}(a, s) \mathbf{1}_{\left[A\left(a, s, \Phi_{t}\right)=a^{\prime}\right]} \pi\left(s^{\prime} \mid s\right)= \\
& =\sum_{s \in \mathbf{S}, a \in \mathbf{A}} \sum_{a^{\prime} \in \mathbf{A}} a^{\prime} \mathbf{1}_{\left[A\left(a, s, \Phi_{t}\right)=a^{\prime}\right]} \Phi_{t}(a, s) \sum_{s^{\prime} \in \mathbf{S}} \pi\left(s^{\prime} \mid s\right) \\
& =\sum_{s \in \mathbf{S}, a \in \mathbf{A}} A\left(a, s, \Phi_{t}\right) \Phi_{t}(a, s)
\end{aligned}
$$

2.2 Non-recursive Equilibrium

- I could alternative define an equilibrium as sequences $\left\{V_{t}, A_{t}\right\}_{t=0}^{\infty}$ and $\left\{K_{t}, R_{t}, w_{t}\right\}_{t=0}^{\infty}$ such that

1. Given $\left\{R_{t}, w_{t}\right\}_{t=0}^{\infty},\left\{V_{t}, A_{t}\right\}_{t=0}^{\infty}$ solve

$$
\begin{aligned}
V_{t}(a, s)= & \max U(c)+\beta \sum_{s^{\prime} \in \mathbf{S}} V_{t+1}\left(a^{\prime}, s^{\prime}\right) \pi\left(s^{\prime} \mid s\right) \\
& \text { s.t. } \quad a^{\prime}=w_{t+1} s^{\prime}+\left[1+r_{t+1}\right][a-c]-r_{t+1} D \\
& 0 \leq c \leq a, a^{\prime} \in \mathbf{A}(\Phi) \\
A_{t}(a, s)= & \arg \max [\ldots]
\end{aligned}
$$

where $r_{t+1}=f^{\prime}\left(K_{t+1}\right)$ and $w_{t+1}=f\left(K_{t+1}\right)-f^{\prime}\left(K_{t+1}\right) K_{t+1}$.
2. $\left\{K_{t}, R_{t}, w_{t}\right\}_{t=0}^{\infty}$ is generated by Φ_{0} and $\left\{A_{t}\right\}_{t=0}^{\infty}$: for all t,

$$
\begin{gathered}
K_{t+1}+D=\sum_{s \in \mathbf{S}, a \in \mathbf{A}} A_{t}(a, s) \Phi_{t}(a, s), \\
\Phi_{t+1}(a, s)=\sum_{s \in \mathbf{S}} \Phi_{t}(a, s) \mathbf{1}_{\left[A_{t}(a, s)=a^{\prime}\right]} \pi\left(s, s^{\prime}\right)
\end{gathered}
$$

and

$$
r_{t}=f^{\prime}\left(K_{t}\right) \quad w_{t}=f\left(K_{t}\right)-f^{\prime}\left(K_{t}\right) K_{t}
$$

- In my work, this approach is much easier. But not in general. Note that there is no guaranty we could write

$$
K_{t+1}=G\left(K_{t}\right)
$$

where G is stationary.

- Also, this approach proves useful in the characterization of the steady state of the economy. That's what Aiyagari does.

2.3 Steady State

- The steady-state distribution Φ is the fixed point of Γ :

$$
\Phi=\Gamma(\Phi)
$$

- The steady-state capital, interest rate, and wage are then computed as:

$$
\begin{aligned}
K & =\int a d \Phi(a)-D \\
r & =r(K) \\
w & =w(K)
\end{aligned}
$$

3 Aiyagari: Steady State

3.1 Individual Behavior

- Let the economy be at the steady state, for all t :

$$
\begin{gathered}
r_{t}=r, \quad w_{t}=w=\omega(r) \\
\bar{b}_{t}=\bar{b} \equiv \min \left\{b, \frac{w l_{\min }}{r}-D\right\} \equiv \bar{b}(w, r, D)
\end{gathered}
$$

- Define:

$$
\begin{aligned}
x_{t} & \equiv a_{t}+\bar{b} \\
z_{t} & \equiv w l_{t}+(1+r) a_{t}+\bar{b}-\tau
\end{aligned}
$$

It follows that

$$
z_{t} \equiv w l_{t}+(1+r) x_{t}-\zeta
$$

where z_{t} are total resources available in t and x_{t+1} is investment in t and

$$
\zeta \equiv r \bar{b}+\tau=r[\bar{b}+D]=\zeta(w, r, D)
$$

Remark: If $\Delta \bar{b}=-\Delta D$, as in the case of the natural borrowin limit, ζ is independent of D. Otherwise, an increase in D (an increase in τ) is like a decrease in the labor income path.

- Then, for individual i :

$$
\begin{aligned}
c_{t} & =z_{t}-x_{t+1} \\
z_{t+1} & =w s_{t+1}+(1+r) x_{t+1}-\zeta
\end{aligned}
$$

Assume s_{t+1} i.i.d. across t as well.

- We can now write the value function in terms of z as:

$$
\begin{aligned}
V(z)= & \max _{0 \leq 0 \leq z} U(z-x)+\beta \sum V\left(z^{\prime}\right) \pi\left(s^{\prime}\right) \\
& \text { s.t. } \quad z^{\prime} \equiv w s^{\prime}-\zeta+(1+r) x
\end{aligned}
$$

and the corresponding optimal investment as

$$
\begin{aligned}
X(z) & =\arg \max _{x}\{\ldots\} \\
A(z) & =X(z)-\bar{b}
\end{aligned}
$$

Remark: If $\Delta \bar{b}=-\Delta D$, then ζ and thus $V($.$) and X($.$) are independent of D$, implying

$$
A(z ; D)=A(z ; 0)+D
$$

- In general, X need not be monotonic with either w or r.
- If preferences are homothetic preference and if ζ is proportional to w, then X is proportional to w.
- Also, $X \rightarrow \infty$ as $r \rightarrow \rho$ and either $X \rightarrow-\infty$ as $r \rightarrow 0$, if no ad hoc borrowing, or $X=\bar{b}$ for all $r \leq \underline{r}$, some $\underline{r}<\rho$, if ad hoc \bar{b}. Thus, X is "on average" increasing.

3.2 Individual Wealth Dynamics

- We henceforth restrict to the case that s_{t} is i.i.d. across time and preferences are CEIS.
- Suppose for a moment that market were complete. Then, the optimal consumption rule would be given by

$$
\begin{aligned}
c_{t} & =m \cdot\left[(1+r) a_{t}+w_{t} s_{t}+h_{t+1}\right]= \\
& =m \cdot\left[z_{t}+\left(h_{t+1}-\bar{b}\right)\right]
\end{aligned}
$$

where h_{t+1} is the present value of labor income and m is the marginal propensity to consume out of effective wealth. Note that $m \in(0,1)$ and $h_{t+1}>$ (natural borrowing limit) $\geq \bar{b}$. Thus

$$
c_{t}=\bar{c}+m \cdot z_{t}
$$

where $\bar{c}>0$ and $m \in(0,1)$.

- For $z_{t} \leq \bar{c} / m, c_{t}>z_{t}$ under compelete markets, but this is impossible under incomplete markets. Under incomplete markets, $C(z)$ is bounded above by the
45°. In particular, there is $\widehat{z} \in\left[z_{\min }, \bar{c} / m\right)$ such that $C(z)=z$ for all $z \leq \widehat{z}$ and $C(z)<z$ otherwise. Moreover, $z>\widehat{z}, 1>C^{\prime}(z)>m$. But as $z \rightarrow \infty$, $C(z)-\left[\bar{c}+m \cdot z_{t}\right] \rightarrow 0$ and $C^{\prime}(z) \rightarrow 0$. Finally, $C^{\prime \prime}<0 ? ? ?$

3.3 Individual Wealth Dynamics

- Given $X($.$) , the low of motion for wealth z_{t}$ of individual i is given by:

$$
z_{t+1}=w s_{t+1}+(1+r) X\left(z_{t}\right)-\zeta
$$

or

$$
z^{\prime}=G\left(z, s^{\prime}\right)
$$

3.4 Steady State: General Equilibrium

- Let

$$
\alpha(w, r, D) \equiv A(z ; w, r, D)=E_{\Phi} X(z ; w, r, D)-\bar{b}
$$

Remark: If $\Delta \bar{b}=-\Delta D$, then

$$
\begin{aligned}
\alpha(w, r, D) & =E_{\Phi} X(z ; w, r)+D-w l_{\min } / r= \\
& =\alpha(w, r, 0)+D
\end{aligned}
$$

and thus $\alpha($.$) moves one-to-one with D$.

- If $\beta(1+r) \geq 1$, then $U^{\prime}\left(c_{t}\right) \geq E U^{\prime}\left(c_{t+1}\right)$, which implies that $x_{t}, z_{t}, a_{t} \rightarrow \infty$.

Therefore, $\lim _{r \rightarrow \rho} \alpha(r)=+\infty$ and r is bounded above by $\rho \equiv 1 /(1+\beta)$.
If $b=\infty$, then $\lim _{r \rightarrow 0} \bar{b}(r)=-\infty$, implying $\lim _{r \rightarrow 0} \alpha(r)=-\infty$. In that case, r is bounded below by 0 .

If $b<\infty$, then $\exists r^{\prime}>0$ such that $\bar{b}(r)=b$ for all $r<r^{\prime}$, implying that $\exists r^{\prime \prime}>0$ such that $\alpha(r)=-b$ for all $r \leq r^{\prime \prime}$ and $\alpha(r)>-b$ for all $r>r^{\prime \prime}$. In that case, $\alpha(r)$ is well defined for $r<0$ as well.

- In equilibrium $w=\omega(r)$ and

$$
a(r, D) \equiv \alpha(\omega(r), r, D)
$$

That's the steady-state supply of savings, as a function of r.

- Remark: Even if $\alpha_{r}>0$ and $\alpha_{w}>0, \omega^{\prime}<0$, and therefore a_{r} is ambiguous.

But we consider $a_{r}>0$.

- Let

$$
\kappa(r) \equiv f^{\prime-1}(r+\delta)
$$

That's the demand for capital, as a function of r.

- General Equilibrium: Given D, r^{*} solves

$$
a\left(r^{*}, D\right)=\kappa\left(r^{*}\right)+D
$$

and $K^{*}=\kappa\left(r^{*}\right) \equiv f^{\prime-1}\left(r^{*}+\delta\right)$.

- Complete vs Incomplete:

$$
\begin{aligned}
r_{\text {inco }} & <1 /(1+\beta)=r_{\text {compl }} \\
& \Rightarrow K_{\text {inco }}>K_{\text {compl }}
\end{aligned}
$$

Saving rate $\delta K / f(K)$ also higher under incomplete markets.

- A higher \bar{b} shifts $a(r)$ left and therefore K^{*} falls.

3.5 The Effect of Government Debt

- If $\Delta \bar{b}=-\Delta D$, then $a(r, D)=a(r, 0)+D$. In this case, r^{*} is determined by

$$
a\left(r^{*}, 0\right)=\kappa\left(r^{*}\right)
$$

and thus r^{*}, K^{*} are independent of D. (Ricardian Equivalence)

- If \bar{b} is independent of D, then ζ increases one-to-one with $\tau=r D$. Because $-\zeta$ is like a deterministic income component, $X($.$) raises with -\zeta / r$ but by less than one-to-one: $\partial X(.) / \partial \zeta \approx-s / r$, where $s \in(0,1)$ is the saving rate. Therefore, an increase in D lowers $X(z)$ but by less than one-to-one: $\partial X(.) / \partial D \approx-s$. Since $a(r, D)=E_{\Phi} X(z ; r, D)-\bar{b}$, we conclude $\partial a(r, D) / \partial D \approx-s<0$. In this case, r^{*} is determined by

$$
a\left(r^{*}, D\right)=\kappa\left(r^{*}\right)+D
$$

and thus r^{*} increases with D. It follows that K^{*} falls with D. (Crowding Out)

3.6 Simulations

- Risk aversion
- Volatility of idiosyncratic shocks l
- Persistence in idiosyncratic shocks l

4 Krusell and Smith: Dynamics

- An approximate or constrained equilibrium is given by

1. V solves the Bellman equation; and A is the corresponding optimal choice:

$$
\begin{aligned}
V(a, s, \mathbf{m})= & \max U(c)+\beta \sum_{s^{\prime} \in \mathbf{S}} V\left(a^{\prime}, s^{\prime}, \mathbf{m}^{\prime}\right) \pi\left(s^{\prime} \mid s\right) \\
& \text { s.t. } \quad a^{\prime}=w(\Phi) s^{\prime}+[1+r(\Phi)][a-c]-r(\Phi) D \\
& c \geq a, a^{\prime} \in \mathbf{A}(\Phi), \\
& \mathbf{m}^{\prime}=\widehat{G}(\mathbf{m}) \\
A(a, s, \mathbf{m})= & \arg \max \{\ldots\}
\end{aligned}
$$

2. Given the initial Φ_{0} and the rule A, compute $\left\{\mathbf{m}_{t}, \Phi_{t}\right\}_{t=0}^{\infty}$ by

$$
\begin{gathered}
\mathbf{m}_{t} \text { are the moments of } \Phi_{t} \\
\Phi_{t+1}(a, s)=\sum_{s \in \mathbf{S}} \Phi_{t}(a, s) \mathbf{1}_{\left[\widehat{A}\left(a, s, \mathbf{m}_{t}\right)=a^{\prime}\right]} \pi\left(s, s^{\prime}\right) .
\end{gathered}
$$

The errors

$$
\varepsilon_{t} \equiv \mathbf{m}_{t+1}-\widehat{G}\left(\mathbf{m}_{t}\right)
$$

are very small.

- Simulations...
- One moment (the mean) is enough...
- Wealth distribution... not enough skewness
- Introduce heterogeneity in discount factors (willingness to save)
- Discuss Rios-Rul et al.

