14.462 Lecture Notes Aiyagari and Krusell-Smith

George-Marios Angeletos MIT Department of Economics

${\rm Spring}\ 2004$

1 The Economy

- $i \in [0, 1]$.
- Employment $l(s_t) = s_t$ i.i.d. across *i* (but not necessarily across *t*), with support $\mathbf{S} = \{s_{\min}, ..., s_{\max}\}, s_{\min} > 0$. Let $\pi(s'|s) = \Pr(s_{t+1} = s'|s_t = s')$ and $\pi(s) = \Pr(s_t = s)$. Note that $\sum_{s'} \pi(s'|s) = 1$ for all *s* and $\pi(s') = \sum_s \pi(s'|s)\pi(s)$.
- Normalize $\mathbb{E}s = 1$.
- Preferences:

$$\mathbb{E}_0 \mathcal{U} = \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t U(c_t)$$

• Budget and borrowing constraint:

$$c_t + a_{t+1} = w_t s_t + (1 + r_t) a_t - \tau_t$$

$$a_t = k_t - b_t$$

$$c_t \ge 0$$

$$k_t \ge 0$$

$$b_t \le \overline{b}_t$$

$$a_{t+1} \ge -\overline{b}_t$$

• The asset grid:

$$a_{t+1} \in \mathbf{A} = \{a^1, a^2, ..., a^N\}$$

where $a^1 = -\overline{b}$, or

$$a_{t+1} \in \mathbf{A} = [-\overline{b}, \infty).$$

• \overline{b} is the borrowing limit. Either exogenous to the economy; or endogenous. E.g.:

$$\overline{b}_{t} = \inf_{\{s_{t+j}\}_{j=1}^{\infty}} \sum_{j=1}^{\infty} (q_{t+j}/q_{t}) [(w_{t+j}s_{t+j} - \tau_{t+j})]$$
$$= \sum_{j=0}^{\infty} [(q_{t+j}/q_{t})(w_{t+j}s_{\min} - r_{t+j}D)]$$
$$q_{t} \equiv \frac{q_{t-1}}{1+r_{t}}$$

Remark: If there is a steady state point $(w_t, r_t) \rightarrow (w, r)$, then:

$$\tau_t \rightarrow \tau = rD$$

 $\overline{b}_t \rightarrow \frac{ws_{\min} - rD}{r} = \frac{ws_{\min}}{r} - D$

2 Equilibrium

• Let

$$\Phi_t(a,s) = \Pr(a_t = a \text{ and } s_t = s)$$

denote the joint probability of a and s in period t.

• The distribution of wealth in period t is given by

$$\psi_t(a) = \sum_{s \in \mathbf{S}} \Phi_t(a, s) = \Pr(a_t = a)$$

• Market clearing:

$$K_t + D = \sum_{a \in \mathbf{A}} a \psi_t(a)$$

where D is (exogenous) government debt and K_t is aggregate (and per capita) capital.

• Equilibrium prices:

$$r_t = f'(K_t) - \delta \equiv r(K_t)$$

$$\Leftrightarrow K_t = \kappa(r_t)$$

$$w_t = f(K_t) - f'(K_t)K_t \equiv w(K_t)$$

$$\Leftrightarrow w_t = \omega(r_t)$$

2.1 Recursive Equilibrium

• Suppose that, in equilibrium, the law of motion for the distribution of wealth is some functional Γ s.t.:

$$\Phi_{t+1} = \Gamma(\Phi_t)$$

This means that the evolution of Φ_t is deterministic.

• Given Φ_t we can compute K_t by simply integrating:

$$K_t = \mathbf{K}(\Phi_t)$$

It follows that $w_t = w(\Phi_t)$ and $r_t = r(\Phi_t)$, as well as

$$\overline{b}_t = b(\Phi_t)$$

Then, we can express the problem of the household in recursive form, provided we let Φ_t be a state variable.

- A recursive equilibrium is given by (V, A, Γ) such that:
 - 1. V solves the Bellman equation;

and A is the corresponding optimal choice:

$$\begin{split} V(a,s,\Phi) &= \max U(c) + \beta \sum_{s' \in \mathbf{S}} V(a',s',\Phi') \pi(s'|s) \\ s.t. \quad a' &= w(\Phi')s' + [1+r(\Phi')][a-c] - r(\Phi')D \\ 0 &\leq c \leq a, \ a' \in \mathbf{A}(\Phi), \\ \Phi' &= \Gamma(\Phi) \\ A(a,s,\Phi) &= \arg \max\{\ldots\} \end{split}$$

2. Γ is generated by A;

that is, Γ maps Φ to Φ' such that

$$\Phi'(a',s') = \sum_{s \in \mathbf{S}} \Phi(a,s) \mathbf{1}_{[A(a,s,\Phi)=a']} \pi(s,s')$$

• The equilibrium path of the economy is then given by $\{\Phi_t\}_{t=0}^{\infty}$ such that

$$\Phi_{t+1} = \Gamma(\Phi_t),$$

for given initial Φ_0 .

• Remark: I write

$$K_{t+1} + D = \sum_{a \in \mathbf{A}} a\psi_{t+1}(a)$$

whereas SL write

$$K_{t+1} + D = \sum_{s \in \mathbf{S}, a \in \mathbf{A}} A(a, s, \Phi_t) \Phi_t(a, s)$$

The two expressions are equivalent:

$$K_{t+1} + D = \sum_{a' \in \mathbf{A}} a' \psi_{t+1}(a') =$$

$$= \sum_{a' \in \mathbf{A}} \sum_{s' \in \mathbf{S}} a' \Phi_{t+1}(a', s')$$

$$= \sum_{a' \in \mathbf{A}} \sum_{s' \in \mathbf{S}} a' \sum_{s \in \mathbf{S}, a \in \mathbf{A}} \Phi_t(a, s) \mathbf{1}_{[A(a, s, \Phi_t) = a']} \pi(s'|s) =$$

$$= \sum_{s \in \mathbf{S}, a \in \mathbf{A}} \sum_{a' \in \mathbf{A}} a' \mathbf{1}_{[A(a, s, \Phi_t) = a']} \Phi_t(a, s) \sum_{s' \in \mathbf{S}} \pi(s'|s)$$

$$= \sum_{s \in \mathbf{S}, a \in \mathbf{A}} A(a, s, \Phi_t) \Phi_t(a, s)$$

2.2 Non-recursive Equilibrium

- I could alternative define an equilibrium as sequences $\{V_t, A_t\}_{t=0}^{\infty}$ and $\{K_t, R_t, w_t\}_{t=0}^{\infty}$ such that
 - 1. Given $\{R_t, w_t\}_{t=0}^{\infty}, \{V_t, A_t\}_{t=0}^{\infty}$ solve

$$V_{t}(a,s) = \max U(c) + \beta \sum_{s' \in \mathbf{S}} V_{t+1}(a',s')\pi(s'|s)$$

s.t. $a' = w_{t+1}s' + [1+r_{t+1}][a-c] - r_{t+1}D$
 $0 \le c \le a, a' \in \mathbf{A}(\Phi)$
 $A_{t}(a,s) = \arg \max[...]$

where $r_{t+1} = f'(K_{t+1})$ and $w_{t+1} = f(K_{t+1}) - f'(K_{t+1})K_{t+1}$.

2. $\{K_t, R_t, w_t\}_{t=0}^{\infty}$ is generated by Φ_0 and $\{A_t\}_{t=0}^{\infty}$: for all t,

$$K_{t+1} + D = \sum_{s \in \mathbf{S}, a \in \mathbf{A}} A_t(a, s) \Phi_t(a, s),$$
$$\Phi_{t+1}(a, s) = \sum_{s \in \mathbf{S}} \Phi_t(a, s) \mathbf{1}_{[A_t(a, s) = a']} \pi(s, s')$$

and

$$r_t = f'(K_t) \quad w_t = f(K_t) - f'(K_t)K_t$$

• In my work, this approach is much easier. But not in general. Note that there is no guaranty we could write

$$K_{t+1} = G(K_t)$$

where G is stationary.

• Also, this approach proves useful in the characterization of the steady state of the economy. That's what Aiyagari does.

2.3 Steady State

• The steady-state distribution Φ is the fixed point of Γ :

$$\Phi = \Gamma(\Phi)$$

• The steady-state capital, interest rate, and wage are then computed as:

$$K = \int a d\Phi(a) - D$$

$$r = r(K)$$

$$w = w(K)$$

3 Aiyagari: Steady State

3.1 Individual Behavior

• Let the economy be at the steady state, for all t:

$$r_t = r, \quad w_t = w = \omega(r)$$
$$\overline{b}_t = \overline{b} \equiv \min\left\{b, \frac{wl_{\min}}{r} - D\right\} \equiv \overline{b}(w, r, D)$$

• Define:

$$\begin{aligned} x_t &\equiv a_t + b \\ z_t &\equiv wl_t + (1+r)a_t + \overline{b} - \tau \end{aligned}$$

It follows that

$$z_t \equiv wl_t + (1+r)x_t - \zeta$$

where z_t are total resources available in t and x_{t+1} is investment in t and

$$\zeta \equiv r\overline{b} + \tau = r[\overline{b} + D] = \zeta(w, r, D)$$

Remark: If $\Delta \overline{b} = -\Delta D$, as in the case of the natural borrowin limit, ζ is independent of D. Otherwise, an increase in D (an increase in τ) is like a decrease in the labor income path.

• Then, for individual *i*:

$$c_t = z_t - x_{t+1}$$

$$z_{t+1} = ws_{t+1} + (1+r)x_{t+1} - \zeta$$

Assume s_{t+1} i.i.d. across t as well.

• We can now write the value function in terms of z as:

$$V(z) = \max_{0 \le 0 \le z} U(z - x) + \beta \sum V(z') \pi(s')$$

s.t. $z' \equiv ws' - \zeta + (1 + r)x$

and the corresponding optimal investment as

$$X(z) = \arg \max_{x} \{ \dots \}$$
$$A(z) = X(z) - \overline{b}$$

Remark: If $\Delta \overline{b} = -\Delta D$, then ζ and thus V(.) and X(.) are independent of D, implying

$$A(z; D) = A(z; 0) + D.$$

- In general, X need not be monotonic with either w or r.
- If preferences are homothetic preference and if ζ is proportional to w, then X is proportional to w.
- Also, $X \to \infty$ as $r \to \rho$ and either $X \to -\infty$ as $r \to 0$, if no ad hoc borrowing, or $X = \overline{b}$ for all $r \leq \underline{r}$, some $\underline{r} < \rho$, if ad hoc \overline{b} . Thus, X is "on average" increasing.

3.2 Individual Wealth Dynamics

- We henceforth restrict to the case that s_t is i.i.d. across time and preferences are CEIS.
- Suppose for a moment that market were complete. Then, the optimal consumption rule would be given by

$$c_t = m \cdot [(1+r)a_t + w_t s_t + h_{t+1}] = = m \cdot [z_t + (h_{t+1} - \overline{b})]$$

where h_{t+1} is the present value of labor income and m is the marginal propensity to consume out of effective wealth. Note that $m \in (0, 1)$ and $h_{t+1} >$ (natural borrowing limit) $\geq \overline{b}$. Thus

$$c_t = \overline{c} + m \cdot z_t$$

where $\overline{c} > 0$ and $m \in (0, 1)$.

• For $z_t \leq \overline{c}/m$, $c_t > z_t$ under compelete markets, but this is impossible under incomplete markets. Under incomplete markets, C(z) is bounded above by the 45⁰. In particular, there is $\hat{z} \in [z_{\min}, \overline{c}/m)$ such that C(z) = z for all $z \leq \hat{z}$ and C(z) < z otherwise. Moreover, $z > \hat{z}$, 1 > C'(z) > m. But as $z \to \infty$, $C(z) - [\overline{c} + m \cdot z_t] \to 0$ and $C'(z) \to 0$. Finally, C'' < 0???

3.3 Individual Wealth Dynamics

• Given X(.), the low of motion for wealth z_t of individual *i* is given by:

$$z_{t+1} = ws_{t+1} + (1+r)X(z_t) - \zeta$$

or

$$z' = G(z, s').$$

3.4 Steady State: General Equilibrium

• Let

$$\alpha(w,r,D) \equiv A(z;w,r,D) = E_{\Phi}X(z;w,r,D) - \overline{b}$$

Remark: If $\Delta \overline{b} = -\Delta D$, then

$$\alpha(w, r, D) = E_{\Phi}X(z; w, r) + D - wl_{\min}/r =$$
$$= \alpha(w, r, 0) + D$$

and thus $\alpha(.)$ moves one-to-one with D.

• If $\beta(1+r) \ge 1$, then $U'(c_t) \ge EU'(c_{t+1})$, which implies that $x_t, z_t, a_t \to \infty$. Therefore, $\lim_{r\to\rho} \alpha(r) = +\infty$ and r is bounded above by $\rho \equiv 1/(1+\beta)$. If $b = \infty$, then $\lim_{r\to 0} \overline{b}(r) = -\infty$, implying $\lim_{r\to 0} \alpha(r) = -\infty$. In that case

If $b = \infty$, then $\lim_{r \to 0} \overline{b}(r) = -\infty$, implying $\lim_{r \to 0} \alpha(r) = -\infty$. In that case, r is bounded below by 0.

If $b < \infty$, then $\exists r' > 0$ such that $\overline{b}(r) = b$ for all r < r', implying that $\exists r'' > 0$ such that $\alpha(r) = -b$ for all $r \le r''$ and $\alpha(r) > -b$ for all r > r''. In that case, $\alpha(r)$ is well defined for r < 0 as well.

• In equilibrium $w = \omega(r)$ and

$$a(r, D) \equiv \alpha(\omega(r), r, D)$$

That's the steady-state supply of savings, as a function of r.

- Remark: Even if $\alpha_r > 0$ and $\alpha_w > 0$, $\omega' < 0$, and therefore a_r is ambiguous. But we consider $a_r > 0$.
- Let

$$\kappa(r) \equiv f'^{-1}(r+\delta)$$

That's the demand for capital, as a function of r.

• General Equilibrium: Given D, r^* solves

$$a(r^*, D) = \kappa(r^*) + D$$

and $K^* = \kappa(r^*) \equiv f'^{-1}(r^* + \delta)$.

• Complete vs Incomplete:

$$r_{inco} < 1/(1+\beta) = r_{compl}$$

 $\Rightarrow K_{inco} > K_{compl}$

Saving rate $\delta K/f(K)$ also higher under incomplete markets.

• A higher \overline{b} shifts a(r) left and therefore K^* falls.

3.5 The Effect of Government Debt

• If $\Delta \overline{b} = -\Delta D$, then a(r, D) = a(r, 0) + D. In this case, r^* is determined by

$$a(r^*, 0) = \kappa(r^*)$$

and thus r^*, K^* are independent of D. (Ricardian Equivalence)

• If \overline{b} is independent of D, then ζ increases one-to-one with $\tau = rD$. Because $-\zeta$ is like a deterministic income component, X(.) raises with $-\zeta/r$ but by less than one-to-one: $\partial X(.)/\partial \zeta \approx -s/r$, where $s \in (0,1)$ is the saving rate. Therefore, an increase in D lowers X(z) but by less than one-to-one: $\partial X(.)/\partial D \approx -s$. Since $a(r, D) = E_{\Phi}X(z; r, D) - \overline{b}$, we conclude $\partial a(r, D)/\partial D \approx -s < 0$. In this case, r^* is determined by

$$a(r^*, D) = \kappa(r^*) + D$$

and thus r^* increases with D. It follows that K^* falls with D. (Crowding Out)

3.6 Simulations

- Risk aversion
- Volatility of idiosyncratic shocks *l*
- Persistence in idiosyncratic shocks *l*

4 Krusell and Smith: Dynamics

- An approximate or constrained equilibrium is given by
 - 1. V solves the Bellman equation;

and A is the corresponding optimal choice:

$$V(a, s, \mathbf{m}) = \max U(c) + \beta \sum_{s' \in \mathbf{S}} V(a', s', \mathbf{m}') \pi(s'|s)$$

$$s.t. \quad a' = w(\Phi)s' + [1 + r(\Phi)][a - c] - r(\Phi)D$$

$$c \ge a, \quad a' \in \mathbf{A}(\Phi),$$

$$\mathbf{m}' = \widehat{G}(\mathbf{m})$$

$$A(a, s, \mathbf{m}) = \arg \max\{...\}$$

2. Given the initial Φ_0 and the rule A, compute $\{\mathbf{m}_t, \Phi_t\}_{t=0}^{\infty}$ by

 \mathbf{m}_t are the moments of Φ_t

$$\Phi_{t+1}(a,s) = \sum_{s \in \mathbf{S}} \Phi_t(a,s) \mathbf{1}_{[\widehat{A}(a,s,\mathbf{m}_t)=a']} \pi(s,s').$$

The errors

$$\boldsymbol{\varepsilon}_t \equiv \mathbf{m}_{t+1} - \widehat{G}(\mathbf{m}_t)$$

are very small.

- Simulations...
- One moment (the mean) is enough...
- Wealth distribution... not enough skewness
- Introduce heterogeneity in discount factors (willingness to save)
- Discuss Rios-Rul et al.