14.462 Advanced Macroeconomics Spring 2004

Problem Set 4 Solution

1. It is easy to check that $p_t = \varepsilon_t$ is the (bubbleless) REE equilibrium. Next consider the learning process. Substituting the model equation into the learning equation yields

$$p_{t+1}^{e} = p_{t}^{e} + \frac{1}{g_{t}} \left(\alpha p_{t}^{e} + \varepsilon_{t-1} - p_{t}^{e} \right) = h_{t} p_{t}^{e} + \frac{\varepsilon_{t-1}}{g_{t}}.$$

By induction one obtain

$$p_{t+1}^e = p_0^e \prod_{s=0}^t h_s + \sum_{s=1}^{t+1} \frac{\varepsilon_{s-2}}{g_{s-1}} \prod_{\tau=s}^t h_{\tau}$$

Using this formula and the fact that the ε_t are iid, we can compute

$$\mathbb{E}\left[p_{t+1}^e - \mathbb{E}_{t,REE}p_{t+1}\right]^2 = (p_0^e)^2 \prod_{s=0}^t h_s^2 + \sigma^2 \sum_{s=1}^{t+1} \frac{1}{g_{s-1}^2} \prod_{\tau=s}^t h_\tau^2 = (p_0^e)^2 \prod_{s=0}^t h_s^2 + \sigma^2 m_t$$

- 2. Necessity is obvious. To show sufficiency notice that $m_t \ge \prod_{\tau=1}^t h_{\tau}^2$, so $\lim_{t\to\infty} m_t = 0$ insures that the term in front of p_0^e vanishes as $t \to \infty$.
- 3. We have

$$h_{t+1}^2 m_t + \frac{1}{g_{t+1}^2} = h_{t+1}^2 \sum_{s=1}^{t+1} \frac{1}{g_{s-1}^2} \prod_{\tau=s}^t h_{\tau}^2 + \frac{1}{g_{t+1}^2} = \sum_{s=1}^{t+1} \frac{1}{g_{s-1}^2} \prod_{\tau=s}^{t+1} h_{\tau}^2 + \frac{1}{g_{t+1}^2} = \sum_{s=1}^{t+2} \frac{1}{g_{s-1}^2} \prod_{\tau=s}^{t+1} h_{\tau}^2 = m_{t+1}$$

4. First notice that $m_t \ge \frac{1}{g_t^2}$ so $\lim_{t\to\infty} m_t = 0$ clearly requires that $\lim_{t\to\infty} g_t = +\infty$. Also $m_t \ge \frac{1}{g_{s-1}^2} \prod_{\tau=s}^t h_{\tau}^2$ for all $s \in \{1, \ldots, t+1\}$. It follows that $\lim_{t\to\infty} m_t = 0$ requires

$$\lim_{t \to \infty} \prod_{\tau=s}^{t} h_{\tau} = 0$$

for all $s \ge 1$, which is stronger than the requirement stated in the problem set since it must hold for all $s \ge 1$. Finally if $\alpha \ge 1$, then $h_t \ge 1$ for all t which is inconsistent with $\lim_{t\to\infty} \prod_{\tau=s}^t h_{\tau} = 0$. Thus it must be the case that $\alpha < 1$.

5. Suppose

$$\lim_{t \to \infty} \prod_{\tau=s}^t h_\tau = 0$$

for all $s \ge 1$. The goal is to show that $\sum_{0}^{+\infty} \frac{1}{g_t} = +\infty$.

- 6. Pick T such that $t \ge T$ implies $\frac{1-\alpha}{q_t} < \frac{1}{2}$ and define $a_n = \frac{1-\alpha}{g_{T+n}}$ for $n \ge 0$. We want to show that $\prod_{n=0}^{\infty} (1-a_n) = 0$ if and only if $\sum_{n=0}^{\infty} a_n = +\infty$. This follows from some results on convergence of infinite products, see the book *Mathematical Analysis, 2ed* by Apostol, pp. 206–209. One direction is not so difficult: as $1 a_n \le e^{-a_n}$, we have $\prod_{n=0}^{\infty} (1-a_n) \le e^{-\sum_{n=0}^{\infty} a_n}$. At least to me it seems that the other direction is a bit more involved, but perhaps you found an easy proof. Otherwise take a look at the book by Apostol.
- 7. If g_t is a constant, then $\lim_{t\to\infty} g_t = +\infty$ fails. If $g_t = \frac{1}{(t+1)^2}$, then $\sum_{0}^{+\infty} \frac{1}{g_t} = +\infty$ fails.

8.