Problem Set 4 Solution

1. It is easy to check that $p_{t}=\varepsilon_{t}$ is the (bubbleless) REE equilibrium. Next consider the learning process. Substituting the model equation into the learning equation yields

$$
p_{t+1}^{e}=p_{t}^{e}+\frac{1}{g_{t}}\left(\alpha p_{t}^{e}+\varepsilon_{t-1}-p_{t}^{e}\right)=h_{t} p_{t}^{e}+\frac{\varepsilon_{t-1}}{g_{t}}
$$

By induction one obtain

$$
p_{t+1}^{e}=p_{0}^{e} \prod_{s=0}^{t} h_{s}+\sum_{s=1}^{t+1} \frac{\varepsilon_{s-2}}{g_{s-1}} \prod_{\tau=s}^{t} h_{\tau}
$$

Using this formula and the fact that the ε_{t} are iid, we can compute

$$
\mathbb{E}\left[p_{t+1}^{e}-\mathbb{E}_{t, R E E} p_{t+1}\right]^{2}=\left(p_{0}^{e}\right)^{2} \prod_{s=0}^{t} h_{s}^{2}+\sigma^{2} \sum_{s=1}^{t+1} \frac{1}{g_{s-1}^{2}} \prod_{\tau=s}^{t} h_{\tau}^{2}=\left(p_{0}^{e}\right)^{2} \prod_{s=0}^{t} h_{s}^{2}+\sigma^{2} m_{t}
$$

2. Necessity is obvious. To show sufficiency notice that $m_{t} \geq \prod_{\tau=1}^{t} h_{\tau}^{2}$, so $\lim _{t \rightarrow \infty} m_{t}=0$ insures that the term in front of p_{0}^{e} vanishes as $t \rightarrow \infty$.
3. We have

$$
\begin{aligned}
& h_{t+1}^{2} m_{t}+\frac{1}{g_{t+1}^{2}} \\
& =h_{t+1}^{2} \sum_{s=1}^{t+1} \frac{1}{g_{s-1}^{2}} \prod_{\tau=s}^{t} h_{\tau}^{2}+\frac{1}{g_{t+1}^{2}}=\sum_{s=1}^{t+1} \frac{1}{g_{s-1}^{2}} \prod_{\tau=s}^{t+1} h_{\tau}^{2}+\frac{1}{g_{t+1}^{2}}=\sum_{s=1}^{t+2} \frac{1}{g_{s-1}^{2}} \prod_{\tau=s}^{t+1} h_{\tau}^{2}=m_{t+1}
\end{aligned}
$$

4. First notice that $m_{t} \geq \frac{1}{g_{t}^{2}}$ so $\lim _{t \rightarrow \infty} m_{t}=0$ clearly requires that $\lim _{t \rightarrow \infty} g_{t}=+\infty$. Also $m_{t} \geq \frac{1}{g_{s-1}^{2}} \prod_{\tau=s}^{t} h_{\tau}^{2}$ for all $s \in\{1, \ldots, t+1\}$. It follows that $\lim _{t \rightarrow \infty} m_{t}=0$ requires

$$
\lim _{t \rightarrow \infty} \prod_{\tau=s}^{t} h_{\tau}=0
$$

for all $s \geq 1$, which is stronger than the requirement stated in the problem set since it must hold for all $s \geq 1$. Finally if $\alpha \geq 1$, then $h_{t} \geq 1$ for all t which is inconsistent with $\lim _{t \rightarrow \infty} \prod_{\tau=s}^{t} h_{\tau}=0$. Thus it must be the case that $\alpha<1$.
5. Suppose

$$
\lim _{t \rightarrow \infty} \prod_{\tau=s}^{t} h_{\tau}=0
$$

for all $s \geq 1$. The goal is to show that $\sum_{0}^{+\infty} \frac{1}{g_{t}}=+\infty$.
6. Pick T such that $t \geq T$ implies $\frac{1-\alpha}{q_{t}}<\frac{1}{2}$ and define $a_{n}=\frac{1-\alpha}{g_{T+n}}$ for $n \geq 0$. We want to show that $\prod_{n=0}^{\infty}\left(1-a_{n}\right)=0$ if and only if $\sum_{n=0}^{\infty} a_{n}=+\infty$. This follows from some results on convergence of infinite products, see the book Mathematical Analysis, 2ed by Apostol, pp. 206-209. One direction is not so difficult: as $1-a_{n} \leq e^{-a_{n}}$, we have $\prod_{n=0}^{\infty}\left(1-a_{n}\right) \leq e^{-\sum_{n=0}^{\infty} a_{n}}$. At least to me it seems that the other direction is a bit more involved, but perhaps you found an easy proof. Otherwise take a look at the book by Apostol.
7. If g_{t} is a constant, then $\lim _{t \rightarrow \infty} g_{t}=+\infty$ fails. If $g_{t}=\frac{1}{(t+1)^{2}}$, then $\sum_{0}^{+\infty} \frac{1}{g_{t}}=+\infty$ fails.
8.

