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Problem Set 6 Solution 

Problem 1 

1. The guess

ki = βxi + (1 − β)y.


implies

K = βθ + (1 − β)y.


Combining this with the relationship y = K + σy u yields


1

y = θ + σuu 

β


Thus as a signal of θ the precision is β2πy . Define


πx

φ = 

πx + β2πy 

Then we have 

E[θ xi, y] = φxi + (1 − φ)y. |

Optimal investment is given by 

ki = E[A xi, y] = (1 − α)E[θ xi, y] + αE[K xi, y]| | |
= [(1 − α) + αβ]E[θ xi, y] + α(1 − β)y|

Substituting for E[θ xi, z, y] we have |

ki = [(1 − α) + αβ]φxi + [[(1 − α) + αβ](1 − φ) + α(1 − β − γ)] y 

Matching coefficients we get 

β = [(1 − α) + αβ]φ 

or equivalently 
β 

φ = 
(1 − α) + αβ 
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Combining this with the equation definition φ gives the condition 

β πx 
= 

(1 − α) + αβ πx + β2πy 

The left hand side is increasing in β with a range [0, 1] while the right hand side is 
πxdecreasing with a range 

� 

πx+πy 
, 1

�
. Thus there is a unique solution for β. The left 

hand side is increasing in α, so β is decreasing in α. The right hand side is increasing 
in πx and decreasing in πy . It follows that β is increasing in πx and decreasing in πy , 
that is 

β = B(α, πx, πy ) 

with Bα < 0, Bπx > 0 and Bπy < 0. For future purposes it is useful to compute the 
elasticities with respect to πx and πy explicitly. We get 

Bπx (α, πx, πy )πx 
= 

Bπy (α, πx, πy )πy 1 
< 

1 
= . 

B(α, πx, πy ) 
− 

B(α, πx, πy ) (1−α) (πx+β2πy )2 
+ 2 2 

[(1−α)+αβ]2 βπxπy 

What is the intuition for these results. If α increases, then complementarities are 
stronger, and agents put more weight on the public signal since it helps predict what 
others will do. Higher precision of the private signal induces agents to put more weight 
on the private signal and higher precision of the signal about K induces agents to 
put more weight on this public signal. However, notice one difference to the paper 
by Angeletos and Pavan. If you increases α, this makes it more attractive to put 
more weight on the public signal. But if agents put more weight on the public signal, 
this makes the public signal less informative about θ, which makes it less attractive 
to put weight on the public signal, partially offsetting the initial effect. Thus all the 
effects on β are muted in comparison to Angeletos and Pavan. Why is the elasticity 
with respect to πx and πy less than 1 in absolute value. Suppose we increase πx by 

2 

one percent and β increases by more that 0.5 percent. Then relative precision of the 
public signal y actually increases, in which case agents would not have wanted to put 
more weight on the private signal in the first place. Similarly, suppose we increase πy 

by one percent. If β decreases by more than 0.5 percent, than relative precision of 
the public signal actually decreases, but in this case agents would not have wanted 
to put more weight on the public signal in the first place. 
It is also instructive to consider how φ depends on the parameters. We have 

(1 − α)φ 
β = (1)

1 − αφ 

Substituting into the definition of φ gives the condition 
πx

φ = .� 
(1−α)φ 

�2 
πx + πy1−αφ 
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Again there is a unique solution 

φ = Φ(α, πx, πy ) 

with Φα > 0, Φπx > 0 and Φπy < 0. Equation (1) implies 

B(α, πx, πy ) ≤ Φ(α, πx, πy ) 

with strict inequality if α > 0 and clearly the wedge is increasing in α. 

2. We have 
β2 

Var(ki θ, y) = Var(βxi + (1 − β)y θ, y) =| |
πx 

so heterogeneity as a function of parameters is given by 

B(α, πx, πy )
2 

H(α, πx, πy ) = 
πx 

It is decreasing in α and πy . Both higher α and higher πy induce agents to put less 
weight on the private signal, and less weight on the private signal translates into less 
heterogeneity. If πx increases, this directly reduces heterogeneity. But agents also 
become more responsive to the private signal, which tends to increase heterogeneity. 
But since the elasticity is less than 1 

2 , we know that this does not overturn the direct 
effect, and so heterogeneity falls. This differs from Angeletos and Pavan, where the 
overall effect is ambiguous. 
We have 

1 
Var(K θ) = Var((1 − β)y θ) = Var 

� 
1 − β

σy u 

���� θ

� 

= 

� 
1 − β

�2 

| |
β β πy 

Thus volatility as a function of the parameters is given by 

� 
1 − B(α, πx, πy ) 

�2 
1 

V (α, πx, πy ) = 
B(α, πx, πy ) πy 

Clearly volatility is increasing in α and decreasing in πx. Higher α induces agents 
to put more weight on the public signal, increasing volatility. Higher precision of 
the private signal does the opposite. The effect of an increase in the precision πy is 
more complicated. The direct effect is to reduce volatility. There are two indirect 
effects, both related to the fact that agents become more responsive to the public and 
thus less responsive to the private signal. Higher responsiveness to the public signal 
increases volatility. This effect is also present in Angeletos and Pavan. In addition, 
less responsiveness to the private signal reduces the precision of y as a signal about 
θ, partially offsetting the increase in πy and thus increasing in volatility. Volatility 
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Figure 1: Volatility as a function of πy 

as a function of πy is analyzed in figure 1. Only the ratio of πx and πy matters for 
the shape, so I restrict attention to the case πx = 1. Thus the figure shows volatility 
as function of πy given πx = 1, and the graph is plotted for different values of α. 
Of course one finds that higher α is associated with higher volatility. Volatility is 
initially increasing in πy but eventually becomes decreasing. 

3. By definition � 1 

w = uidi. 
0 

Substituting the formula for ui = Aki − 1 k2 yields
2 i 

1� 1 1 
� 1 

w = A kidi − ki 
2di = AK − 

1 
� 

ki 
2di 

2 00 2 0 
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Since 
� 1 

k2di = 
�

0

1
(ki − K)2di + K2 this can be written as 

0 i 

1 
�� 1 � 

w = AK − (ki − K)2di + K2 . 
2 0 

Substituting A = (1 − α)θ + αK yields 

11 
�� � 

w = [(1 − α)θ + αK] (ki − K)2di + K2K − 
2 0 

1 1 
� 1 

= (1 − α)θK − (1 − 2α) K2 (ki − K)2di. 
2 

− 
2 0 

Now notice that ki − K = β(xi − θ) and so 

� 1 β2 

(ki − K)2di = β2σ2 = .x 
0 πx 

Thus 

1 1 β2 

E[w θ] = (1 − α)θE[K θ] − (1 − 2α) E[K2 θ] .| |
2 

| − 
2 πx 

Using the facts that E[K θ] = θ and E[K2 θ] = Var(K θ) + θ2, this becomes | | |

1 
E[w θ] = (1 − α)θ2 − (1 − 2α) 

�
Var(K θ) + θ2

� 1 β2 

|
2 

| − 
2 πx 

1 1 
�

β2 � 

= (1 − 2α)Var(K θ) + .− 
2 
θ2 − 

2 
|

πx 

Now recall from part 2. that Var(ki θ, y) = β2 
. Using this fact 

πx
|

1 1 
E[w θ] = [(1 − 2α)Var(K θ) + Var(ki θ, y)] .| − 

2 
θ2 − 

2 
| |

So we can analyze welfare by looking at 

Ω(α, πx, πy ) = (1 − 2α)V (α, πx, πy ) + H(α, πx, πy ). 

Since both volatility and heterogeneity are decreasing in πx, we immediately get 
that Ω(α, πx, πy ) is decreasing in πx. Thus making private information more precise 
is unambiguously good for welfare. This is different from Angeletos and Pavan. 
There more precise private information meant less uncertainty at the expense of lower 
coordination, with ambiguous overall effects on welfare. But here precise private 
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information is also vital for the informativeness of the public signal and thus for 
coordination. So it makes sense that here the effect is unambiguous. 

β πx 
= 

(1 − α) + αβ πx + β2πy 

β 
�
πx + β2πy 

� 
= πx [(1 − α) + αβ]⇐⇒ 

⇐⇒ ββ2πy = πx(1 − α)(1 − β) 

β2 

= (1 − α)
(1 − β) 1 ⇐⇒ 

πx β πy 

Thus 
� 

(1 − β) 
�2 

1 β2 

Ω(α, πx, πy ) = (1 − 2α) + 
β πy πx 

(1 − 2α) 
� 

(1 − β) 
� 

β2 β2 

=	 + 
β πx πx 

β2 

1 �−
(1 
α 
− 2α)(1 − β) + (1 − α)β 

� 

= 
πx (1 − α)β 
β 

� 
(1 − 2α) + αβ 

� 

= 
πx (1 − α) 
β 

�
α 

� 

= 
πx 

1 − (1 − β) 
1 − α 

The condition α < 1 is sufficient for Ω(α, πx, πy ) to be positive. Thus the last rela
2 

tionship implies that Ω(α, πx, πy ) is increasing in β for given πx. Since β is decreasing 
in πy , it follows that making public information more precise also increases welfare. 
Also notice that the right hand side is decreasing in α for given β and πx. Since 
β is decreasing in α, it follows that Ω(α, πx, πy ) is also decreasing in α. Making 
complementarities stronger improves welfare. 

4. For this part I will not try to sign derivatives analytically.	 Instead I derive the relevant 
formulas and perform a limited numerical evaluation. 
Now start with the guess 

ki = βxi + γz + (1 − β − γ)y. 

This implies

K = βθ + γz + (1 − β − γ)y.
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Combining this with the relationship y = K + σy u yields 

β γ 1 
y = θ + z + σuu 

β + γ β + γ β + γ 

To obtain the information provided by y beyond what is provided by z define 

(β + γ)y − γz 1 
ỹ = = θ + σy u 

β β 

Thus we get an additional signal of precision β2πy . Define 

πz
δ = 

πx + πz + β2πy 
πx

φ = 
πx + πz + β2πy 

Then we have 

E[θ xi, z, y] = φxi + δz + (1 − φ − δ)ỹ|

= φxi + δz + (1 − φ − δ)
(β + γ)y − γz 

β �
γ 

� 
(β + γ) 

= φxi + δ − (1 − φ − δ) z + (1 − φ − δ) y
β β 

Optimal investment is given by 

ki = E[A xi, z, y] = (1 − α)E[θ xi, z, y] + αE[K xi, z, y]| | |
= (1 − α)E[θ xi, z, y] + αE[K xi, z, y]| |
= [(1 − α) + αβ]E[θ xi, z, y] + αγz + α(1 − β − γ)y|

Substituting for E[θ xi, z, y] we have |

ki = [(1 − α) + αβ]φxi � �
γ 

� � 

+ [(1 − α) + αβ] δ − (1 − φ − δ) + αγ z 
β � �

(β + γ) 
� � 

+ [(1 − α) + αβ] (1 − φ − δ) + α(1 − β − γ) y
β 

Matching coefficients we get 

β = [(1 − α) + αβ]φ � �
γ 

� �
γ = [(1 − α) + αβ] δ − (1 − φ − δ) + αγ

β 
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Eliminating φ, we now get the following equation for β


β πx 
= 

(1 − α) + αβ πx + πz + β2πy 

Again there is a unique solution 

β = B(α, πx, πz , πy ) 

with Bα < 0, Bπx > 0, Bπz < 0, Bπy < 0. 
From the condition defining γ we get 

� 
β 

�
γ

� �
γ = δ − (1 − φ− δ) + αγ

φ β 

γ [φ(1 − α) + (1 − φ− δ)] = βδ 

βπz
γ = 

πx(1 − α) + β2πy 

Thus

B(α, πx, πz , πy )πz


γ = C(α, πx, πy , πz ) = 
πx(1 − α) + B(α, πx, πz , πy )2πy 

I will not try to sign the derivatives but instead do some limited numerical evaluation. 
This is done in Figure 2, and the results contain nothing unexpected. An increase 
in the degree of complementarity leads to an increase in the weight on z, as does an 
increase in its own precision, while higher precision of the other signals reduces the 
weight on z. Finally the coefficient on y is given by 

1 − β − γ = D(α, πx, πy , πz ) ≡= 1 − B(α, πx, πy , πz ) − C(α, πx, πy , πz ) 

Figure 3 provides a limited numerical evaluation of the properties of D. Notice that 
more complementarity does not necessarily lead to an increase in the weight on y. 
This makes sense, since now there is an alternative public signal available. As α 
increases, more weight is put on public information, but as the weight on private 
information shrinks, y becomes less and less precise as a signal about θ, and thus at 
high levels of α the signal z is the more attractive public signal. 
Heterogeneity is once again 

B(α, πx, πy , πz )
2 

H(α, πx, πy , πz ) = ,
πx 

but volatility is more complicated 

Var(K θ) = Var(γz + (1 − β − γ)y θ)| |
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�

Substituting y yields 
� � 

β γ 1 
�����

�
Var(K θ) = Var γz + (1 − β − γ) θ + z + σuu θ|

β + γ β + γ β + γ � 
γ 1 − β − γ 

����
� 

= Var z + σu θ
β + γ β + γ � 

γ 
�2 

1 
� 

1 − β − γ
�2 

1 
= + 

β + γ πz β + γ πy 

Thus 
� 

C(α, πx, πy , πz ) 
�2 

1 
� 

D(α, πx, πy , πz ) 
�2 

1 
V (α, πx, πy , πz ) = + 

1 − D(α, πx, πy , πz ) πz 1 − D(α, πx, πy , πz ) πy 

Figure 4 provides a limited evaluation of volatility. Here it turns out that πy reduces

volatility.

Again we can analyze welfare by looking at


Ω(α, πx, πy , πz ) = (1 − 2α)V (α, πx, πy , πz ) + H(α, πx, πy , πz ). 

Figure 5 provides a limited numerical evaluation. Notice that an increase in πz can 
reduce welfare. 

Problem 2 (A simple Model of Savings) 

1. The specification of the problem should of course include γ > 0 and γ = 1. Combining 
the budget constraints, future wealth is


w� = R�(w − c) + e�


and so the Bellman equation is 
� 

c1−γ �
V (w) = max 

1 − γ 
+ βE[V (R�(w − c) + e�)] . 

c 

2. The first order condition is


c−γ = βE[R�V �(R�(w − c) + e�)]


and the envelope condition is


V �(w) = βE[R�V �(R�(w − c) + e�)].


Thus V �(w) = c−γ and we obtain the Euler equation

� � 

c� 
�−γ 

� 

1 = βE R� . 
c 
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3. A guess that will work is 
w1−γ 

V (w) = a

1 − γ


for some a > 0.

The objective of the recursive problem then reduces to


c1−γ 

R1−γ (w − c)1−γ 
¯+ βa 

1 − γ 1 − γ 

1¯where R = E[(R�)1−γ ] 1−γ is the certainty equivalent of R�. The first order condition 
becomes 

¯c−γ = βaR1−γ (w − c)−γ


and so

1 

c = w 
¯1 1−γ 

γ1 + (βa) γ R


which yields

1 
γ R γ(βa) ¯

1−γ 

w1 
γ R γ 

w − c = 
1 + (βa) ¯

1−γ


Replacing into the objective yields the maximized value


1 
γ

� 
1

+ βaR1−γ [(βa) γ R̄
1−γ 

]1−γ 
� 

w1−γ 
¯

1 1 
γ[1 + (βa) γ R γ ¯

1−γ 

]1−γ 1 − γ¯
1−γ 

]1−γ [1 + (βa) γ R 
1

� 
1 1 ¯

1−γ 

]1−γ 
� 

w1−γ 
¯

1−γ [(βa) γ R γ 
γ= 

γ R γ 

+ [(βa) γ R ]γ 

¯
1−γ 

]1−γ 1 − γ1 1 
γ[1 + (βa) ¯

1−γ 

]1−γ [1 + (βa) γ R 
1 ¯

1−γ � 
w1−γγ

� 
1 (βa) γ R 

= +1 1 
γ[1 + (βa) γ R γ ¯

1−γ 

]1−γ 1 − γ¯
1−γ 

]1−γ [1 + (βa) γ R 
1 ¯

1−γ 

]γ w
1−γ 

γ= [1 + (βa) γ R

1 − γ


For our guess to be correct we need 

1 
γ R γγa = [1 + (βa) ¯

1−γ 

] . 

¯This equation has a unique positive solution if βR1−γ < 1, and then it is given by 

1 1−γ 
�−γ 

γ R̄ γa = 
�
1 − β . 

4. With Rβ = 1 the Euler equation becomes 

c−γ = Et[c
−γ 

t t+1] 
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� 

and as marginal utility is strictly convex and endowment shocks are nondegenerate 

Et[ct+1] > ct. 

Thus Rβ < 1 is needed to obtain zero expected consumption growth. 

5. The way the budget constraints are written the price of the asset is normalized to 
one. Then it is more convenient to write wt = ct + ptbt+1 and wt = et + dtbt where 
now dt ≥ 0 is a given i.i.d. dividend and the price pt has to adjust in equilbrium. 
The Euler equation is then 

e−γ p = βE[d�(e�)−γ ]


and so the price is a function of the current endowment:


p(e) = e γ βE[d�(e�)−γ ] 

A high endowment today implies low expected consumption growth, which makes 
transferring resources into the future attractive, so the price of the asset has to be 
high for no trade to be an equilibrium. 
If there is only idiosyncratic risk, then we have an endowment economy version of 
Aiyagari. No trade is then of course not an equilibrium and the interest rate will 
depend on the wealth distribution. In steady state we of course must have Rβ < 1. 

6. Here we have a special case of part 3. If βR1−γ < 1, then 
1 

R̄ γ 
1−γ 

)wt 
1 
γ 

1 
γ γ ¯

1−γ 

R 
wt = (1 − βct = 

1 + (βa) 

and 
1 
γwt+1 = R(wt − ct) = (βR) wt, 

so 
wt = 

�
(βR) 

1 
γ

�t 
w0 

and 
) 
�
(βR) 

�t 
γ ¯

1−γ 

R 
1 1 

γct = (1 − β γ w0. 

Substituing into the utility function yields 
1−γ 
t 

1−γ 
0

∞ ∞��
β(βR) γ 

1−γ 
�tc 

γ ¯
1−γ 

R )1−γ w 
1 − γ 

1 

βt (1 − β γ= 
1 − γ


t=0 t=0 

γ 

γ 

¯

1−γ 

1−γ 

R 

1 
γ

1−γ 
0 R̄ )1−γ(1 − β w 

= 1 
γ 1 − γ(1 − β ) 

1−γ 
0γ 

1−γ
�
1 − β 

γ 
1−γ w0 = a . 

1 − γ 
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