1.3 Nominal rigidities

- two period economy
- households of consumers-producers
- monopolistic competition, price-setting
- uncertainty about productivity
- preferences

$$
\sum_{t=1}^{2} \beta^{t}\left(\log C_{i t}-\frac{\kappa}{1+\eta} N_{i t}^{1+\eta}\right)
$$

$C_{i t}$ is the CES aggregate

$$
C_{i t}=\left(\int_{0}^{1} C_{i j t}^{\frac{\sigma-1}{\sigma}} d i\right)^{\frac{\sigma}{\sigma-1}}
$$

with $\sigma>1$

- Technology

$$
Y_{i t}=A_{t} N_{i t}
$$

- productivity shocks A_{t}

$$
\begin{gathered}
A_{t}=e^{a_{t}} \\
a_{1}=x+\epsilon_{1}, \\
a_{2}=x+\epsilon_{2}
\end{gathered}
$$

- x and ϵ_{t} mean-zero, i.i.d., normal
- A signal about long-run productivity

$$
s=x+e
$$

- nominal balances with central bank at nominal rate R
- household set $P_{i t}$ then consumers buy
- intertemporal BC

$$
\left(P_{2} C_{i 2}-P_{i 2} Y_{i 2}\right)+R \cdot\left(P_{1} C_{i 1}-P_{i 1} Y_{i 1}\right) \leq 0
$$

- P_{t} is the price index

$$
P_{t}=\left(\int P_{i t}^{1-\sigma} d i\right)^{\frac{1}{1-\sigma}}
$$

Flexible price equilibrium

- period 2. Optimality for price-setting,

$$
(1-\sigma) \frac{1}{P_{t} C_{i t}} \frac{P_{i t} Y_{i t}}{P_{i t}}+\kappa \sigma \frac{1}{A_{t}} \frac{Y_{i t}}{P_{i t}} N_{i t}^{\eta}=0 .
$$

- symmetric equilibrium, $Y_{t}=A_{t} N_{t}$, this condition gives

$$
N_{t}=\left(\frac{\sigma-1}{\kappa \sigma}\right)^{\frac{1}{1+\eta}}=1
$$

(normalization of κ).

- quantities

$$
C_{t}=Y_{t}=A_{t} .
$$

- what about consumers' decisions?
- consumer Euler equation

$$
\frac{1}{C_{1}}=R E\left[\left.\frac{P_{1}}{P_{2}} \frac{1}{C_{2}} \right\rvert\, a_{1}, s\right]
$$

- $C_{t}=A_{t}$ log-normal

$$
r+p_{1}-E\left[p_{2} \mid a_{1}, s\right]=E\left[a_{2} \mid a_{1}, s\right]-a_{1}-\frac{1}{2} \operatorname{Var}\left[a_{2} \mid a_{1}, s\right]
$$

- all changes in $E\left[y_{2}\right]$ go to the real interest rate
- notice role of p_{1} : neutralizes r

Fixed prices in period 1

- price-setting before any shock observed

$$
E\left[(1-\sigma) \frac{1}{P_{1} C_{i 1}} \frac{P_{i 1} Y_{i 1}}{P_{i 1}}+\kappa \sigma \frac{1}{A_{2}} N_{i 1}^{\eta} \frac{Y_{i 1}}{P_{i 1}}\right]=0
$$

- rearranging this gives

$$
E\left[N_{1}^{1+\eta}\right]=1
$$

- this will pin down averages but not responses to shocks
- quantities: equilibrium in period 2 identical
- in period 1 now Euler equation (set $p_{2}=0$)

$$
c_{1}=E\left[a_{2} \mid a_{1}, s\right]-\frac{1}{2} \operatorname{Var}\left[a_{2} \mid a_{1}, s\right]-r-p_{1} .
$$

- suppose r fixed, p_{1} fixed by assumption
- now "sentiment shocks" affect consumption

Figure 8: RBC and Simple Monetary Model
Expectation of Technology Shock in Period 13 Not Realized

Image removed due to copyright restrictions.

Cite as: Guido Lorenzoni, course materials for 14.462 Advanced Macroeconomics II, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

- pin down p_{1}

$$
E\left[N_{1}^{1+\eta}\right]=E\left[e^{(1+\eta)\left(y_{1}-a_{1}\right)}\right]=1
$$

- thanks to log-normality this equation can be solved explicitly and gives

$$
\begin{aligned}
-r & -p_{1}-\frac{1}{2} \operatorname{Var}\left[a_{2} \mid a_{1}, s\right]+\frac{1}{2}(1+\eta)(\beta+\delta-1)^{2} \sigma_{x}^{2}+ \\
& +\frac{1}{2}(1+\eta)(\beta-1)^{2} \sigma_{\epsilon}^{2}+\frac{1}{2}(1+\eta) \delta^{2} \sigma_{e}^{2}=0
\end{aligned}
$$

- where

$$
E\left[a_{2} \mid a_{1}, s\right]=\beta a_{1}+\delta s
$$

- simple implication anticipated changes in r are neutral
- if instead we follow rule, e.g.

$$
r=\alpha_{0}+\alpha_{1} y_{1}
$$

then economy response changes

- we'll go back to monetary policy

What about demand shocks?

- here price response is absent
- need a bit more flexibility
- sticky prices
- imperfect information

1.4 Lucas-Phelps islands

- Lucas 1972
- Overlapping generations
- Agents work at date t consume at date $t+1$
- Preferences

$$
E\left[C_{i, t+1}-\frac{1}{2} N_{i, t}^{2}\right]
$$

- money

Cite as: Guido Lorenzoni, course materials for 14.462 Advanced Macroeconomics II, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
x_{t} proportional subsidy from gov't
agents work, accumulate money, spend, die

$$
\begin{aligned}
Y_{i, t} & =N_{i, t} \\
M_{i, t+1} & =P_{i, t} Y_{i, t}\left(1+x_{t+1}\right) \\
P_{j, t+1} C_{i, t+1} & =M_{i, t+1}
\end{aligned}
$$

at date $t+1$ agent i consumes the output of agent j

Cite as: Guido Lorenzoni, course materials for 14.462 Advanced Macroeconomics II, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

- continuum of islands, $i \in[0,1]$
- unit mass of agents on each
- old agents receive proportional transfer x_{t} from govt'
- they travel to one island where they spend all their money
- prices $P_{i, t}$ determined in walrasian equilibrium
- young agents decide their labor supply only observe $P_{i, t}$
- old agents in island i are representative sample
- but different mass $\phi_{i, t}$
- nominal demand demand in island i is

$$
\phi_{i, t} \int_{0}^{1} M_{i, t} d i=\phi_{i, t} M_{t}
$$

- $\phi_{i, t}$ log-normal with

$$
\int_{0}^{1} \phi_{i, t} d i=1
$$

- Idiosyncratic demand shock

$$
\log \phi_{i, t}=u_{i, t}
$$

- Monetary shocks log-normal

$$
\epsilon_{t}=\log \left(1+x_{t}\right)
$$

- total nominal demand is

$$
D_{i, t}=\phi_{i, t}\left(1+x_{t}\right) M_{t-1}
$$

in logs

$$
d_{i, t}=\epsilon_{t}+u_{i, t}+m_{t-1}
$$

Market clearing

$$
P_{i, t} N_{i, t}=\phi_{i, t}\left(1+x_{t}\right) M_{t-1}
$$

Information structure

- all agents observe $\left\{M_{t-1}, M_{t-2}, \ldots\right\}$
- old agents observe $x_{t}, P_{j, t}$ (j is the good they buy)
- young agents observe $P_{i, t}$
observing $P_{i, t}$ and M_{t-1}, and knowing their own $N_{i, t}$ young agents can infer

$$
\phi_{i, t}\left(1+x_{t}\right)
$$

Labor supply

Agents solve

$$
\begin{array}{rl}
\max _{N_{i, t}, C_{i, t+1}} & E\left[\left.C_{i, t+1}-\frac{1}{2} N_{i, t}^{2} \right\rvert\, P_{i, t}, M_{t-1}\right] \\
\text { s.t. } & P_{j, t+1} C_{i, t+1}=P_{i, t} N_{i, t}\left(1+x_{t+1}\right)
\end{array}
$$

Substitute $C_{i, t+1}$ and obtain

FOC

$$
E\left[\left.\frac{P_{i, t}}{P_{j, t+1}}\left(1+x_{t+1}\right)-N_{i, t} \right\rvert\, P_{i, t}, M_{t-1}\right]=0
$$

interpetation

$$
\underbrace{N_{i, t}}_{\text {labor supply }}=E[\left.\underbrace{\frac{P_{i, t}}{P_{j, t+1}}}_{\text {exp.infl. }}\left(1+x_{t+1}\right) \right\rvert\, P_{i, t}, M_{t-1}]
$$

Equilibrium prices

guess:

$$
P_{i, t}=g\left(\phi_{i, t}\left(1+x_{t}\right)\right) M_{t-1}
$$

Because $\phi_{i, t}$ and x_{t} are i.i.d. the distribution of $\phi_{j, t+1}\left(1+x_{t+1}\right)$ is given at date t.

Decompose

$$
\begin{aligned}
N_{i, t} & =E\left[\left.\frac{P_{i, t}}{P_{j, t+1}}\left(1+x_{t+1}\right) \right\rvert\, P_{i, t}, M_{t-1}\right]= \\
& =E_{i, t}\left[\frac{P_{i, t}}{M_{t}}\right] E_{i, t}\left[\frac{M_{t}}{P_{j, t+1}}\left(1+x_{t+1}\right)\right]
\end{aligned}
$$

Cite as: Guido Lorenzoni, course materials for 14.462 Advanced Macroeconomics II, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
then

$$
E\left[\left.\frac{1+x_{t+1}}{g\left(\phi_{j, t+1}\left(1+x_{t+1}\right)\right)} \right\rvert\, \phi_{j, t+1}\left(1+x_{t+1}\right)\right]=\xi
$$

is a constant independent of today's shocks

$$
N_{i, t}=\xi E_{i, t}\left[\frac{P_{i, t}}{M_{t-1}} \frac{1}{1+x_{t}}\right]
$$

From equilibrium condition we obtain

$$
\phi_{i, t} \frac{M_{t}}{P_{i, t}}=N_{i, t}=\xi E_{i, t}\left[\frac{P_{i, t}}{M_{t}}\right]
$$

in logs,

$$
m_{t}-p_{i, t}+u_{i, t}=(\ldots)-E_{i, t}\left[m_{t}-p_{i, t}\right]
$$

(constant terms in (...), depend on variances)

We obtain

$$
p_{i, t}=\bar{p}+\frac{1}{2}\left(m_{t}+u_{i t}\right)+\frac{1}{2} E_{i, t}\left[m_{t}\right]
$$

Agents observe

$$
m_{t}+u_{i, t}=m_{t-1}+\epsilon_{t}+u_{i, t}
$$

Define

$$
\bar{E}_{t}\left[m_{t}\right]=\int_{0}^{1} E\left[m_{t} \mid m_{t-1}, \epsilon_{t}+u_{i, t}\right] d i
$$

Then, averaging, we have

$$
p_{t}=\bar{p}+\frac{1}{2} m_{t}+\frac{1}{2} \bar{E}_{t}\left[m_{t}\right]
$$

Imperfect information

$$
\bar{E}_{t}\left[m_{t}\right] \neq m_{t}
$$

in particular

$$
E\left[m_{t} \mid m_{t-1}, \epsilon_{t}+u_{i, t}\right]=m_{t-1}+\beta\left(\epsilon_{t}+u_{i t}\right)
$$

where

$$
\beta=\frac{\sigma_{m}^{2}}{\sigma_{m}^{2}+\sigma_{u}^{2}}
$$

SO

$$
\bar{E}_{t}\left[m_{t}\right]=m_{t-1}+\beta \epsilon_{t} \neq m_{t-1}+\epsilon_{t}
$$

We have

$$
p_{t}=\bar{p}+m_{t-1}+\frac{1}{2}(1+\beta) \epsilon_{t}
$$

and output is

$$
\begin{aligned}
y_{t} & =m_{t}-p_{t} \\
& =\bar{y}+\frac{1}{2}(1-\beta) \epsilon_{t}
\end{aligned}
$$

- larger $\frac{\sigma_{m}^{2}}{\sigma_{u}^{2}}$ implies smaller real effects of monetary policy
- Phillips curve depends on the monetary regime

Wrapping up

- with partially revealing prices
- first order expect. $m_{t} \neq \bar{E}_{t}\left[m_{t}\right]$
- this can explain short-run non-neutrality
- prices adjust less than $1: 1$ with imp. info
- policy regime affects inference and thus effects of shocks

