1 Financial frictions

- accelerator, old idea: feedback investment increases output (multiplier) output increases investment (accelerator)
- GE discipline: think of both effects as driven by underlying shocks
- e.g. persistent productivity shock: output goes up because of current shock, investment because of expected higher productivity
- need of large and persistent productivity shocks
- can financial factors help: amplification, persistence
- more generally: financial factors can help explain balance sheets effects
- example: dollar denominated debt in currency crises
issues
- understanding investment and asset prices (from the producers point of view)
- welfare implications/optimal policy
- how deep in corporate finance need a macro person go?

Cite as: Guido Lorenzoni, course materials for 14.462 Advanced Macroeconomics II, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

- intermediation: banks and monetary policy

One motivating picture

Image removed due to copyright restrictions.

Image removed due to copyright restrictions.

Cite as: Guido Lorenzoni, course materials for 14.462 Advanced Macroeconomics II, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

- split the material in two parts
- one emphasizes borrowing
- the other (liquid) asset accumulation
- in both a (non-representative) selection of tools and applications

1.1 Financial frictions and investment

Two basic sources of friction:

- it is hard to promise future returns
- separation of control and ownership (it is hard to delegate decisions)

The first easier to incorporate in macro models

1.2 Basic model of limited pledgeability

- Holmstrom and Tirole (1997) (see Tirole's book 3.4)
- Entrepreneur lives two periods, 0 and 1
- Has initial wealth N
- Chooses to invest K in project
- In period 1 chooses action $e \in\left\{e^{h}, e^{l}\right\}$
- Action determines probability of success $p^{h}>p^{l}$
- Success: payoff $R^{H} K$
- Insuccess: payoff $R^{L} K$
- Utility

$$
\begin{gathered}
\mathrm{E}\left[c_{0}^{E}+c_{1}^{E}-e K\right] \\
c_{0}^{E} \geq, c_{1}^{E} \geq 0
\end{gathered}
$$

- Utility of outside investors (consumer)

$$
\mathrm{E}\left[c_{0}+c_{1}\right]
$$

large endowment e

- Financial contract: payment from consumers to entrepreneur at date 0 l_{0},
state contingent payment from entrepreneur to consumers at date 1

$$
d_{1}^{H}, d_{1}^{L} .
$$

1.2.1 Incentives at date 1

- Choose action e^{h} if

$$
\begin{aligned}
& p^{h}\left(R^{H} K-d_{1}^{H}\right)+\left(1-p^{h}\right)\left(R^{L} K-d_{1}^{L}\right)-e^{h} K \geq \\
& p^{l}\left(R^{H} K-d_{1}^{H}\right)+\left(1-p^{l}\right)\left(R^{L} K-d_{1}^{L}\right)-e^{l} K
\end{aligned}
$$

- Simplify: assumption

$$
R^{L}=0
$$

conjectures

$$
d_{1}^{L}=0 \quad c_{0}^{E}=0
$$

definition

$$
\begin{aligned}
\Delta p & =p^{h}-p^{l} \\
\Delta e & =e^{h}-e^{l}
\end{aligned}
$$

- Obtain upper bound for d_{1}^{H}

$$
\begin{aligned}
\Delta p & \left(R^{H} K-d_{1}^{H}\right)-\Delta e K \geq 0 \\
d_{1}^{H} & \leq\left[R^{H}-\frac{\Delta e}{\Delta p}\right] K \\
& =\frac{1}{R^{H}}\left[R^{H}-\frac{\Delta e}{\Delta p}\right] R^{H} K
\end{aligned}
$$

- $\frac{1}{R^{H}}\left[R^{H}-\frac{\Delta e}{\Delta p}\right]$ pledgeable portion of future returns
- Assumption

$$
\begin{equation*}
\theta=\frac{1}{R^{H}}\left[R^{H}-\frac{\Delta e}{\Delta p}\right]>0 \tag{A1}
\end{equation*}
$$

- fact

$$
\theta<1
$$

- Optimization

$$
\begin{gathered}
\max p^{h}\left(R^{H} K-d_{1}^{H}\right)-e^{h} K \\
d_{1}^{H} \leq \theta R^{H} K \\
K
\end{gathered}=l_{0}+N .
$$

- in short

$$
\begin{gathered}
\max p^{h} R^{H} K-e^{h} K-K \\
K \leq p^{h} \theta R^{H} K+N
\end{gathered}
$$

Cite as: Guido Lorenzoni, course materials for 14.462 Advanced Macroeconomics II, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

- Assumption: profitability

$$
\begin{equation*}
p^{h} R^{H}>1+e^{h} \tag{A2}
\end{equation*}
$$

- Assumption: limited pledgable returns

$$
\begin{equation*}
\theta p^{h} R^{H}<1 \tag{A3}
\end{equation*}
$$

- picture...
- Equilibrium leverage

$$
K=\frac{1}{1-p^{h} \theta R^{H}} N
$$

- Investment increasing in insider's wealth: basice balance sheet effect
- Rate of return on entrepreneurial capital higher than market return

$$
p^{h} R^{H}-e^{H}>1
$$

- (interest rate here is 0 , we didn't look at consumers' endowment...)
- check that the low effort is dominated
- assume that

$$
p^{h} R^{H}<e^{l}+1
$$

- then the best contract with the low effort has $K=0$

1.2.2 Closing the model in GE

- Fixed supply of labor equal 1
- Unit mass of entrepreneurs with uncorrelated shocks
- CRS concave production function $A F(K, L)$, where $A \in\left\{A^{H}, A^{L}\right\}$, keep $A^{L}=0$

$$
R^{H} K=\max _{L} A^{H} F(K, L)-w L
$$

- equilibrium

$$
R^{H}=A^{H} F_{1}\left(K, 1 / p^{h}\right)
$$

Find \tilde{K} s.t.

$$
\tilde{K}=p^{h}\left[A^{H} F_{1}\left(\tilde{K}, 1 / p^{h}\right)-\frac{\Delta e}{\Delta p}\right] \tilde{K}+N
$$

Also find two cutoffs:

1. the first best level of investment K^{*} s.t.

$$
p^{h} A^{H} F_{1}\left(K^{*}, 1 / p^{h}\right)=1+e^{h}
$$

2. the level of investment \hat{K}_{1} optimal at the low action

$$
p^{l} A^{H} F_{1}\left(\hat{K}_{1}, 1 / p^{l}\right)=1+e^{l}
$$

Three cases:

- If $\tilde{K}<\hat{K}_{1}$ then we reach an equilibrium with unconstrained borrowing but suboptimal effort $e=e^{l}$
- If $\tilde{K} \in\left[\hat{K}_{1}, K^{*}\right)$ we reach an equilibrium with constrained borrowing and effort $e=e^{h}$ as the one described above
- If $\tilde{K}>\hat{K}_{1}$ then we reach an unconstrained, first best equilibrium with $K=K^{*}$ and the entrepreneur can consume

$$
c_{0}^{H}=N-\tilde{K}-p^{h}\left[A^{H} F_{1}\left(\tilde{K}, 1 / p^{h}\right)-\frac{\Delta e}{\Delta p}\right]>0 .
$$

