2 "Non-fundamental" movements in asset prices and investment

- Late 90's "bubble"
- High investment, high asset prices
- What shocks driving it? Expectations, rational/exuberance
- What channels?
- What welfare/policy implications?

2.1 A model of non-fundamental prices

- Harrison and Kreps, Sheinkman and Xiong
- Trading dates 0 and 1
- Payoff realized at date $2 R^{H}=1, R^{L}=0$
- Signal $s \in\{h, l\}$ observed date 1

Image removed due to copyright restrictions.

Cite as: Guido Lorenzoni, course materials for 14.462 Advanced Macroeconomics II, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

- Agents with different "view of the world"
- Agent O does not think signal is informative, he assigns probability π^{O} to high realization
- Agent T thinks signal is informative, assign conditional probabilities

$$
\pi^{h}>\pi^{o}>\pi^{l}
$$

- Both think signal h has ex ante probability α
- No short selling
- Price of the asset is π^{o} or π^{h} at date 1
- Price of asset at date 0 is

$$
P_{0}=(1-\alpha) \pi^{o}+\alpha \pi^{h}>\pi^{o}
$$

Cite as: Guido Lorenzoni, course materials for 14.462 Advanced Macroeconomics II, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

- Cost of investment at date 0

$$
-\frac{1}{2} k^{2}
$$

- Optimal choice of k

$$
k=P_{0}=\pi^{o}+\alpha\left(\pi^{h}-\pi^{o}\right)
$$

- both "fundamental" and "non fundamental"

2.1.1 Welfare

- Agent T zero surplus
- Agent O surplus

$$
\left[\pi^{o}+\alpha\left(\pi^{h}-\pi^{o}\right)\right] k-\frac{1}{2} k^{2}
$$

- First welfare theorem holds: k efficient
- Panageas: under mispricing driven by difference of opinions and short-sale constraints

1. q theory holds

2. investment is efficient

Cite as: Guido Lorenzoni, course materials for 14.462 Advanced Macroeconomics II, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

2.2 Monopolistic supply of bubbly investment

- Gilchrist, Himmelberg, Huberman
- Suppose large mass of Agents T, risk averse CARA
- they enter the economy at date 1 only consume at date 2
- Now at date 1

$$
\begin{gathered}
\max \mathbb{E}^{T}[U((R-P) x+W)] \\
\mathbb{E}^{T}\left[(R-P) U^{\prime}((R-P) x+W)\right]=0
\end{gathered}
$$

- Rewrite focs using CARA

$$
\pi(1-P) e^{-\rho x}+(1-\pi)(0-P) e^{-\rho 0}=0
$$

- Demand for stocks at date 1

$$
x=\frac{1}{\rho}\left[\log \frac{\pi}{1-\pi}-\log \frac{P}{1-P}\right]
$$

- Inverse demand function

$$
P=\mathcal{P}(x, \pi)
$$

Problem of Agent O at date 1:

$$
\begin{aligned}
V(k, \pi)=\max & x \mathcal{P}(x, \pi)+\pi^{o}[k-x] \\
\text { s.t. } & 0 \leq x \leq k
\end{aligned}
$$

- still no short selling
- now prices depend on amount sold, monopolist
- If $\pi=\pi^{l}$ optimal $x=0$

$$
\mathcal{P}\left(x, \pi^{l}\right)-\pi^{o}+\frac{\partial \mathcal{P}}{\partial x} x<0 \text { at } x=0
$$

proof:

- $\mathcal{P}\left(0, \pi^{l}\right)=\pi^{l}<\pi^{o}$
- If $\pi=\pi^{h}$ two possibilities

$$
\begin{gathered}
\mathcal{P}\left(x, \pi^{h}\right)-\pi^{o}+\frac{\partial \mathcal{P}}{\partial x} x=0 \text { with } x \in(0, k] \\
\mathcal{P}\left(x, \pi^{h}\right)-\pi^{o}+\frac{\partial \mathcal{P}}{\partial x} x>0 \text { with } x=k
\end{gathered}
$$

- In the first case

$$
\frac{\partial V\left(k, \pi^{h}\right)}{\partial k}=\pi^{o}
$$

- In the second case

$$
\frac{\partial V\left(k, \pi^{h}\right)}{\partial k}=\mathcal{P}\left(k, \pi^{h}\right)+\frac{\partial \mathcal{P}\left(k, \pi^{h}\right)}{\partial x}>\pi^{o}
$$

- Investment at date 0
- Case 1:

$$
k=(1-\alpha) \pi^{o}+\alpha \pi^{o}=\pi^{o}
$$

Asset prices

$$
P_{0}=\pi^{o}
$$

- Case 2:

$$
k=(1-\alpha) \pi^{o}+\alpha\left[\mathcal{P}\left(k, \pi^{h}\right)+\frac{\partial \mathcal{P}\left(k, \pi^{h}\right)}{\partial x}\right]
$$

Asset prices

$$
P_{0}=(1-\alpha) \pi^{o}+\alpha \mathcal{P}\left(k, \pi^{h}\right)
$$

- Dispersion of opinion

$$
\begin{aligned}
\pi^{h} & =\pi^{o}+\sigma \\
\pi^{l} & =\pi^{o}-(\alpha /(1-\alpha)) \sigma
\end{aligned}
$$

- when σ is high then Case 2 applies
- when σ is low then Case 1 applies
- q theory does not hold
- investment responds less than 1:1 to the non-fundamental shock

Model predictions

1. Increase in $\sigma \Rightarrow$ increase in asset price P_{0} over and above predicted increase in $\operatorname{MPK}\left(\pi^{o} R^{H}+\left(1-\pi^{o}\right) R^{L}=\pi^{o}\right)$
2. Increase in $\sigma \Rightarrow$ increase in investment
3. The investment respons is relatively weaker after a "non-fundamental" shock

$$
\frac{\Delta k / \Delta \sigma}{\Delta P_{0} / \Delta \sigma}<\frac{\Delta k / \Delta R^{H}}{\Delta P_{0} / \Delta R^{H}}
$$

Image removed due to copyright restrictions.

Cite as: Guido Lorenzoni, course materials for 14.462 Advanced Macroeconomics II, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Image removed due to copyright restrictions.

Cite as: Guido Lorenzoni, course materials for 14.462 Advanced Macroeconomics II, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

2.2.1 Welfare

- Two elements of efficiency:

1. Efficient allocation of the bubbly asset ex post
2. Efficient investment ex ante

Ex post efficiency (constrained efficiency)

$$
\begin{aligned}
& \max _{x, \tau} \phi \mathbb{E}^{T}[U(R x+W-\tau)]+\mathbb{E}^{O}[R(k-x)+\tau] \\
& \text { s.t. } 0 \leq x \leq k
\end{aligned}
$$

1. Efficiency achieved by competitive trading of the bubble: find a P s.t.

$$
\begin{aligned}
\mathbb{E}^{T}\left[(R-P) U^{\prime}((R-P) x)\right] & =0 \\
\mathbb{E}^{O}[R-P] & =0
\end{aligned}
$$

if $x \in(0, k)$ and inequalities if $x=0$ or $x=k$.

Claim: In case 2 we have ex post efficiency, since

$$
\mathcal{P}\left(x, \pi^{h}\right)-\pi^{o}+\frac{\partial \mathcal{P}}{\partial x} x>0
$$

implies

$$
\mathcal{P}\left(x, \pi^{h}\right)-\pi^{o}>0
$$

so corner solution is efficient.

In case 1 we have $x<x^{*}$, too little bubble is sold to the public (usual monopoly result).

Ex ante efficiency

- Two notions: conditional efficiency and second best efficiency
- depending on whether you can fix or not monopoly distortion at date 1
- In case 1 we may have second best efficiency but we always have conditional inefficiency
- if the bubble was efficiently allocated ex post and $x^{*}<k$, then π^{o} would be the social value of the bubbly asset

$$
k=\pi^{o}
$$

- conditional on monopoly ex post, $P^{h}>\pi^{o}$,

$$
k<\alpha P^{h}+(1-\alpha) \pi^{o}
$$

- In case 2 ex post allocation is efficient
- we have inefficient investment ex ante

$$
k=\alpha\left(\mathcal{P}\left(k, \pi^{h}\right)+\frac{\partial \mathcal{P}}{\partial x}\right)+(1-\alpha) \pi^{o}<\alpha \mathcal{P}\left(k, \pi^{h}\right)+(1-\alpha) \pi^{o}
$$

- The bubbly asset is collateral for betting and agents enjoy betting
- A monopolist produces too little betting collateral

2.3 Bubble in Japan

- Chirinko and Shaller (2001) more structural approach to finding a bubble and its effects

Image removed due to copyright restrictions.

Cite as: Guido Lorenzoni, course materials for 14.462 Advanced Macroeconomics II, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Image removed due to copyright restrictions.

Cite as: Guido Lorenzoni, course materials for 14.462 Advanced Macroeconomics II, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

- Remember foc from Hayashi model

$$
G_{1}\left(k^{\prime}, k\right)=\beta \mathrm{E}\left[V_{1}\left(k^{\prime}, s^{\prime}\right)\right]
$$

- envelope

$$
V_{1}(k, s)=\left(A(s) F_{1}(k, l)-G_{2}\left(k^{\prime}, k\right)\right)
$$

Functional form

$$
G\left(k^{\prime}, k\right)=p_{I}\left(k^{\prime}-(1-\delta) k\right)+C\left(\left(k^{\prime}-(1-\delta) k\right), k\right)
$$

where C is adjustment cost (sensu stricto).

- Euler equation

$$
p_{I, t}+C_{I, t}=\beta \mathrm{E}_{t}\left[A_{t+1} F_{K, t+1}-C_{K, t+1}+(1-\delta)\left(p_{I, t+1}+C_{I, t+1}\right)\right]
$$ (interpretation)

- Scenario 1: no bubble/inactive financing mechanism

$$
\begin{aligned}
Q_{t} & =p_{I, t}+C_{I, t} \\
p_{I, t}+C_{I, t} & =\beta \mathrm{E}_{t}\left[A_{t+1} F_{K, t+1}-C_{K, t+1}+(1-\delta)\left(p_{I, t+1}+C_{I, t+1}\right)\right]
\end{aligned}
$$

- Scenario 2: bubble/inactive financing mechanism

$$
\begin{aligned}
Q_{t} & =p_{I, t}+C_{I, t}+B_{t} \\
p_{I, t}+C_{I, t} & =\beta \mathrm{E}_{t}\left[A_{t+1} F_{K, t+1}-C_{K, t+1}+(1-\delta)\left(p_{I, t+1}+C_{I, t+1}\right)\right]
\end{aligned}
$$

- Scenario 3: bubble/active financing mechanism

$$
\begin{aligned}
Q_{t} & =p_{I, t}+C_{I, t}+B_{t} \\
p_{I, t}+C_{I, t} & >\beta \mathrm{E}_{t}\left[A_{t+1} F_{K, t+1}-C_{K, t+1}+(1-\delta)\left(p_{I, t+1}+C_{I, t+1}\right)\right]
\end{aligned}
$$

Image removed due to copyright restrictions.

Cite as: Guido Lorenzoni, course materials for 14.462 Advanced Macroeconomics II, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Image removed due to copyright restrictions.

Cite as: Guido Lorenzoni, course materials for 14.462 Advanced Macroeconomics II, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

- Can we distinguish this from good signal not in the econometrician observable set?
- A: No.
- Simple two periods example

$$
k=\pi
$$

- Suppose the econometrician does not observe good signal, replaces π with $\bar{\pi}$, then asset price

$$
q=\pi
$$

- both equations violated:

$$
\begin{aligned}
& \pi>\bar{\pi} \\
& k>\bar{\pi}
\end{aligned}
$$

